Update app.py
Browse files
app.py
CHANGED
|
@@ -24,9 +24,6 @@ st.markdown("Cavity Detection Tool (CADET) is a machine learning pipeline traine
|
|
| 24 |
# Create file uploader widget
|
| 25 |
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])
|
| 26 |
|
| 27 |
-
# Make two columns
|
| 28 |
-
col1, col2 = st.columns(2)
|
| 29 |
-
|
| 30 |
# Define function to plot the uploaded image
|
| 31 |
def plot_image(image_array, scale):
|
| 32 |
plt.figure(figsize=(4, 4))
|
|
@@ -69,45 +66,53 @@ def cut(data0, wcs0, scale=1):
|
|
| 69 |
|
| 70 |
return data, wcs
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
# If file is uploaded, read in the data and plot it
|
| 73 |
if uploaded_file is not None:
|
| 74 |
-
col1.subheader("Input image")
|
| 75 |
-
col2.subheader("CADET prediction")
|
| 76 |
-
|
| 77 |
with fits.open(uploaded_file) as hdul:
|
| 78 |
data = hdul[0].data
|
| 79 |
wcs = WCS(hdul[0].header)
|
| 80 |
|
| 81 |
# Add a slider to change the scale
|
| 82 |
with col1:
|
| 83 |
-
max_scale = int(data.shape[0] // 128)
|
| 84 |
-
# scale = st.slider("Scale", 1, max_scale, 1, 1)
|
| 85 |
-
|
| 86 |
-
st.markdown(
|
| 87 |
-
"""<style>[data-baseweb="select"] {margin-top: -50px;}</style>""",
|
| 88 |
-
unsafe_allow_html=True
|
| 89 |
-
)
|
| 90 |
-
|
| 91 |
-
scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
| 92 |
-
|
| 93 |
plot_image(np.log10(data+1), scale)
|
| 94 |
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
| 111 |
plot_prediction(y_pred)
|
| 112 |
|
| 113 |
# ccd = CCDData(pred, unit="adu", wcs=wcs)
|
|
|
|
| 24 |
# Create file uploader widget
|
| 25 |
uploaded_file = st.file_uploader("Choose a FITS file", type=['fits'])
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
# Define function to plot the uploaded image
|
| 28 |
def plot_image(image_array, scale):
|
| 29 |
plt.figure(figsize=(4, 4))
|
|
|
|
| 66 |
|
| 67 |
return data, wcs
|
| 68 |
|
| 69 |
+
# Make two columns
|
| 70 |
+
col1, col2 = st.columns(2)
|
| 71 |
+
col1.subheader("Input image")
|
| 72 |
+
col2.subheader("CADET prediction")
|
| 73 |
+
|
| 74 |
+
with col1:
|
| 75 |
+
st.markdown(
|
| 76 |
+
"""<style>[data-baseweb="select"] {margin-top: -50px;}</style>""",
|
| 77 |
+
unsafe_allow_html=True
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
max_scale = int(data.shape[0] // 128)
|
| 81 |
+
# scale = st.slider("Scale", 1, max_scale, 1, 1)
|
| 82 |
+
scale = int(st.selectbox('Scale:',[i+1 for i in range(max_scale)], label_visibility="hidden"))
|
| 83 |
+
|
| 84 |
+
with col2:
|
| 85 |
+
button == st.button('Detect cavities', disabled=True)
|
| 86 |
+
|
| 87 |
+
|
| 88 |
# If file is uploaded, read in the data and plot it
|
| 89 |
if uploaded_file is not None:
|
|
|
|
|
|
|
|
|
|
| 90 |
with fits.open(uploaded_file) as hdul:
|
| 91 |
data = hdul[0].data
|
| 92 |
wcs = WCS(hdul[0].header)
|
| 93 |
|
| 94 |
# Add a slider to change the scale
|
| 95 |
with col1:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
plot_image(np.log10(data+1), scale)
|
| 97 |
|
| 98 |
+
button.disabled = False
|
| 99 |
+
|
| 100 |
+
if button:
|
| 101 |
+
data, wcs = cut(data, wcs, scale=scale)
|
| 102 |
+
|
| 103 |
+
image = np.log10(data+1)
|
| 104 |
+
|
| 105 |
+
y_pred = 0
|
| 106 |
+
for j in [0,1,2,3]:
|
| 107 |
+
rotated = np.rot90(image, j)
|
| 108 |
+
pred = model.predict(rotated.reshape(1, 128, 128, 1)).reshape(128 ,128)
|
| 109 |
+
pred = np.rot90(pred, -j)
|
| 110 |
+
y_pred += pred / 4
|
| 111 |
+
|
| 112 |
+
# Thresholding
|
| 113 |
+
y_pred = np.where(y_pred > 0.4, y_pred, 0)
|
| 114 |
+
|
| 115 |
+
with col2:
|
| 116 |
plot_prediction(y_pred)
|
| 117 |
|
| 118 |
# ccd = CCDData(pred, unit="adu", wcs=wcs)
|