File size: 18,495 Bytes
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214dc2c
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214dc2c
 
 
 
 
f880dff
 
 
41e934b
f880dff
 
 
41e934b
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214dc2c
f880dff
 
214dc2c
f880dff
214dc2c
f880dff
 
 
 
41e934b
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e934b
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e934b
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41e934b
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214dc2c
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
214dc2c
f880dff
 
 
 
 
 
 
 
 
214dc2c
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214dc2c
f880dff
 
 
 
 
 
 
 
 
214dc2c
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214dc2c
 
f880dff
 
 
 
 
 
 
214dc2c
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
214dc2c
f880dff
 
 
 
 
 
214dc2c
f880dff
 
 
 
 
 
 
 
 
 
 
 
214dc2c
 
f880dff
 
 
 
 
 
 
214dc2c
 
f880dff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause license.

import re
import uuid
from functools import partial

import gradio as gr
import imageio.v3 as iio
import spaces
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as T
from PIL import Image

from unipixel.constants import MEM_TOKEN, SEG_TOKEN
from unipixel.dataset.utils import process_vision_info
from unipixel.model.builder import build_model
from unipixel.utils.io import load_image, load_video
from unipixel.utils.transforms import get_sam2_transform
from unipixel.utils.visualizer import draw_mask, sample_color

MODEL = 'PolyU-ChenLab/UniPixel-3B'

TITLE = 'UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning'

HEADER = """
<p align="center" style="margin: 1em 0 2em;"><img width="260" src="https://raw.githubusercontent.com/PolyU-ChenLab/UniPixel/refs/heads/main/.github/logo.png"></p>
<h3 align="center">Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning</h3>
<div style="display: flex; justify-content: center; gap: 5px;">
    <a href="https://arxiv.org/abs/2509.18094" target="_blank"><img src="https://img.shields.io/badge/arXiv-2509.18094-red"></a>
    <a href="https://polyu-chenlab.github.io/unipixel/" target="_blank"><img src="https://img.shields.io/badge/Project-Page-brightgreen"></a>
    <a href="https://huggingface.co/collections/PolyU-ChenLab/unipixel-68cf7137013455e5b15962e8" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue"></a>
    <a href="https://huggingface.co/datasets/PolyU-ChenLab/UniPixel-SFT-1M" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-orange"></a>
    <a href="https://github.com/PolyU-ChenLab/UniPixel/blob/main/README.md" target="_blank"><img src="https://img.shields.io/badge/License-BSD--3--Clause-purple"></a>
    <a href="https://github.com/PolyU-ChenLab/UniPixel" target="_blank"><img src="https://img.shields.io/github/stars/PolyU-ChenLab/UniPixel"></a>
</div>
<p style="margin-top: 1em;">UniPixel is a unified MLLM for pixel-level vision-language understanding. It flexibly supports a variety of fine-grained tasks, including image/video segmentation, regional understanding, and a novel PixelQA task that jointly requires object-centric referring, segmentation, and question-answering in videos. Please open an <a href="https://github.com/PolyU-ChenLab/UniPixel/issues/new" target="_blank">issue</a> if you meet any problems.</p>
"""

# https://github.com/gradio-app/gradio/pull/10552
JS = """
function init() {
    if (window.innerWidth >= 1536) {
        document.querySelector('main').style.maxWidth = '1536px'
    }

    document.getElementById('query_1').addEventListener('keydown', function f1(e) { if (e.key === 'Enter') { document.getElementById('submit_1').click() } })
    document.getElementById('query_2').addEventListener('keydown', function f2(e) { if (e.key === 'Enter') { document.getElementById('submit_2').click() } })
    document.getElementById('query_3').addEventListener('keydown', function f3(e) { if (e.key === 'Enter') { document.getElementById('submit_3').click() } })
    document.getElementById('query_4').addEventListener('keydown', function f4(e) { if (e.key === 'Enter') { document.getElementById('submit_4').click() } })
}
"""

model, processor = build_model(MODEL, attn_implementation='sdpa')

sam2_transform = get_sam2_transform(model.config.sam2_image_size)

device = torch.device('cuda')

colors = sample_color()
color_map = {f'Target {i + 1}': f'#{int(c[0]):02x}{int(c[1]):02x}{int(c[2]):02x}' for i, c in enumerate(colors * 255)}
color_map_light = {
    f'Target {i + 1}': f'#{int(c[0] * 127.5 + 127.5):02x}{int(c[1] * 127.5 + 127.5):02x}{int(c[2] * 127.5 + 127.5):02x}'
    for i, c in enumerate(colors)
}


def enable_btns():
    return (gr.Button(interactive=True), ) * 4


def disable_btns():
    return (gr.Button(interactive=False), ) * 4


def reset_seg():
    return 16, gr.Button(interactive=False)


def reset_reg():
    return 1, gr.Button(interactive=False)


def update_region(blob):
    if blob['background'] is None or not blob['layers'][0].any():
        return

    region = blob['background'].copy()
    region[blob['layers'][0][:, :, -1] == 0] = [0, 0, 0, 0]

    return region


def update_video(video, prompt_idx):
    if video is None:
        return gr.ImageEditor(value=None, interactive=False)

    _, images = load_video(video, sample_frames=16)
    component = gr.ImageEditor(value=images[prompt_idx - 1], interactive=True)

    return component


@spaces.GPU
def infer_seg(media, query, sample_frames=16, media_type=None):
    global model

    if not media:
        gr.Warning('Please upload an image or a video.')
        return None, None, None

    if not query:
        gr.Warning('Please provide a text prompt.')
        return None, None, None

    if any(media.endswith(k) for k in ('jpg', 'png')):
        frames, images = load_image(media), [media]
    else:
        frames, images = load_video(media, sample_frames=sample_frames)

    messages = [{
        'role':
        'user',
        'content': [{
            'type': 'video',
            'video': images,
            'min_pixels': 128 * 28 * 28,
            'max_pixels': 256 * 28 * 28 * int(sample_frames / len(images))
        }, {
            'type': 'text',
            'text': query
        }]
    }]

    text = processor.apply_chat_template(messages, add_generation_prompt=True)

    images, videos, kwargs = process_vision_info(messages, return_video_kwargs=True)

    data = processor(text=[text], images=images, videos=videos, return_tensors='pt', **kwargs)

    data['frames'] = [sam2_transform(frames).to(model.sam2.dtype)]
    data['frame_size'] = [frames.shape[1:3]]

    model = model.to(device)

    output_ids = model.generate(
        **data.to(device),
        do_sample=False,
        temperature=None,
        top_k=None,
        top_p=None,
        repetition_penalty=None,
        max_new_tokens=512)

    assert data.input_ids.size(0) == output_ids.size(0) == 1
    output_ids = output_ids[0, data.input_ids.size(1):]

    if output_ids[-1] == processor.tokenizer.eos_token_id:
        output_ids = output_ids[:-1]

    response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
    response = response.replace(f' {SEG_TOKEN}', SEG_TOKEN).replace(f'{SEG_TOKEN} ', SEG_TOKEN)

    entities = []
    for i, m in enumerate(re.finditer(re.escape(SEG_TOKEN), response)):
        entities.append(dict(entity=f'Target {i + 1}', start=m.start(), end=m.end()))

    answer = dict(text=response, entities=entities)

    imgs = draw_mask(frames, model.seg, colors=colors)

    path = f"/tmp/{uuid.uuid4().hex}.{'gif' if len(imgs) > 1 else 'png'}"
    iio.imwrite(path, imgs, duration=100, loop=0)

    if media_type == 'image':
        if len(model.seg) >= 1:
            masks = media, [(m[0, 0].numpy(), f'Target {i + 1}') for i, m in enumerate(model.seg)]
        else:
            masks = None
    else:
        masks = path

    return answer, masks, path


infer_seg_image = partial(infer_seg, media_type='image')
infer_seg_video = partial(infer_seg, media_type='video')


@spaces.GPU
def infer_reg(blob, query, prompt_idx=1, video=None):
    global model

    if blob['background'] is None:
        gr.Warning('Please upload an image or a video.')
        return

    if not blob['layers'][0].any():
        gr.Warning('Please provide a mask prompt.')
        return

    if not query:
        gr.Warning('Please provide a text prompt.')
        return

    if video is None:
        frames = torch.from_numpy(blob['background'][:, :, :3]).unsqueeze(0)
        images = [Image.fromarray(blob['background'], mode='RGBA')]
    else:
        frames, images = load_video(video, sample_frames=16)

    frame_size = frames.shape[1:3]

    mask = torch.from_numpy(blob['layers'][0][:, :, -1]).unsqueeze(0) > 0

    refer_mask = torch.zeros(frames.size(0), 1, *frame_size)
    refer_mask[prompt_idx - 1] = mask

    if refer_mask.size(0) % 2 != 0:
        refer_mask = torch.cat((refer_mask, refer_mask[-1, None]))
    refer_mask = refer_mask.flatten(1)
    refer_mask = F.max_pool1d(refer_mask.transpose(-1, -2), kernel_size=2, stride=2).transpose(-1, -2)
    refer_mask = refer_mask.view(-1, 1, *frame_size)

    if video is None:
        prefix = f'Here is an image with the following highlighted regions:\n[0]: <{prompt_idx}> {MEM_TOKEN}\n'
    else:
        prefix = f'Here is a video with {len(images)} frames denoted as <1> to <{len(images)}>. The highlighted regions are as follows:\n[0]: <{prompt_idx}>-<{prompt_idx + 1}> {MEM_TOKEN}\n'

    messages = [{
        'role':
        'user',
        'content': [{
            'type': 'video',
            'video': images,
            'min_pixels': 128 * 28 * 28,
            'max_pixels': 256 * 28 * 28 * int(16 / len(images))
        }, {
            'type': 'text',
            'text': prefix + query
        }]
    }]

    text = processor.apply_chat_template(messages, add_generation_prompt=True)

    images, videos, kwargs = process_vision_info(messages, return_video_kwargs=True)

    data = processor(text=[text], images=images, videos=videos, return_tensors='pt', **kwargs)

    refer_mask = T.resize(refer_mask, (data['video_grid_thw'][0][1] * 14, data['video_grid_thw'][0][2] * 14))
    refer_mask = F.max_pool2d(refer_mask, kernel_size=28, stride=28)
    refer_mask = refer_mask > 0

    data['frames'] = [sam2_transform(frames).to(model.sam2.dtype)]
    data['frame_size'] = [frames.shape[1:3]]
    data['refer_mask'] = [refer_mask]

    model = model.to(device)

    output_ids = model.generate(
        **data.to(device),
        do_sample=False,
        temperature=None,
        top_k=None,
        top_p=None,
        repetition_penalty=None,
        max_new_tokens=512)

    assert data.input_ids.size(0) == output_ids.size(0) == 1
    output_ids = output_ids[0, data.input_ids.size(1):]

    if output_ids[-1] == processor.tokenizer.eos_token_id:
        output_ids = output_ids[:-1]

    response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
    response = response.replace(' [0]', '[0]').replace('[0] ', '[0]').replace('[0]', '<REGION>')

    entities = []
    for m in re.finditer(re.escape('<REGION>'), response):
        entities.append(dict(entity='region', start=m.start(), end=m.end(), color="#f85050"))

    answer = dict(text=response, entities=entities)

    return answer


def build_demo():
    with gr.Blocks(title=TITLE, js=JS, theme=gr.themes.Soft()) as demo:
        gr.HTML(HEADER)

        with gr.Tab('Image Segmentation'):
            download_btn_1 = gr.DownloadButton(label='๐Ÿ“ฆ Download', interactive=False, render=False)
            msk_1 = gr.AnnotatedImage(label='Segmentation Results', color_map=color_map, render=False)
            ans_1 = gr.HighlightedText(
                label='Model Response', color_map=color_map_light, show_inline_category=False, render=False)

            with gr.Row():
                with gr.Column():
                    media_1 = gr.Image(type='filepath')

                    sample_frames_1 = gr.Slider(1, 32, value=16, step=1, visible=False)

                    query_1 = gr.Textbox(label='Text Prompt', placeholder='Please segment the...', elem_id='query_1')

                    with gr.Row():
                        random_btn_1 = gr.Button(value='๐Ÿ”ฎ Random', visible=False)

                        reset_btn_1 = gr.ClearButton([media_1, query_1, msk_1, ans_1], value='๐Ÿ—‘๏ธ Reset')
                        reset_btn_1.click(reset_seg, None, [sample_frames_1, download_btn_1])

                        download_btn_1.render()

                        submit_btn_1 = gr.Button(value='๐Ÿš€ Submit', variant='primary', elem_id='submit_1')

                with gr.Column():
                    msk_1.render()
                    ans_1.render()

            ctx_1 = submit_btn_1.click(disable_btns, None, [random_btn_1, reset_btn_1, download_btn_1, submit_btn_1])
            ctx_1 = ctx_1.then(infer_seg_image, [media_1, query_1, sample_frames_1], [ans_1, msk_1, download_btn_1])
            ctx_1.then(enable_btns, None, [random_btn_1, reset_btn_1, download_btn_1, submit_btn_1])

        with gr.Tab('Video Segmentation'):
            download_btn_2 = gr.DownloadButton(label='๐Ÿ“ฆ Download', interactive=False, render=False)
            msk_2 = gr.Image(label='Segmentation Results', render=False)
            ans_2 = gr.HighlightedText(
                label='Model Response', color_map=color_map_light, show_inline_category=False, render=False)

            with gr.Row():
                with gr.Column():
                    media_2 = gr.Video()

                    with gr.Accordion(label='Hyperparameters', open=False):
                        sample_frames_2 = gr.Slider(
                            1,
                            32,
                            value=16,
                            step=1,
                            interactive=True,
                            label='Sample Frames',
                            info='The number of frames to sample from a video (Default: 16)')

                    query_2 = gr.Textbox(label='Text Prompt', placeholder='Please segment the...', elem_id='query_2')

                    with gr.Row():
                        random_btn_2 = gr.Button(value='๐Ÿ”ฎ Random', visible=False)

                        reset_btn_2 = gr.ClearButton([media_2, query_2, msk_2, ans_2], value='๐Ÿ—‘๏ธ Reset')
                        reset_btn_2.click(reset_seg, None, [sample_frames_2, download_btn_2])

                        download_btn_2.render()

                        submit_btn_2 = gr.Button(value='๐Ÿš€ Submit', variant='primary', elem_id='submit_2')

                with gr.Column():
                    msk_2.render()
                    ans_2.render()

            ctx_2 = submit_btn_2.click(disable_btns, None, [random_btn_2, reset_btn_2, download_btn_2, submit_btn_2])
            ctx_2 = ctx_2.then(infer_seg_video, [media_2, query_2, sample_frames_2], [ans_2, msk_2, download_btn_2])
            ctx_2.then(enable_btns, None, [random_btn_2, reset_btn_2, download_btn_2, submit_btn_2])

        with gr.Tab('Image Regional Understanding'):
            download_btn_3 = gr.DownloadButton(visible=False)
            msk_3 = gr.Image(label='Highlighted Region', render=False)
            ans_3 = gr.HighlightedText(label='Model Response', show_inline_category=False, render=False)

            with gr.Row():
                with gr.Column():
                    media_3 = gr.ImageEditor(
                        label='Image & Mask Prompt',
                        brush=gr.Brush(colors=["#ff000080"], color_mode='fixed'),
                        transforms=None,
                        layers=False)
                    media_3.change(update_region, media_3, msk_3)

                    prompt_frame_index_3 = gr.Slider(1, 16, value=1, step=1, visible=False)

                    query_3 = gr.Textbox(
                        label='Text Prompt', placeholder='Please describe the highlighted region...', elem_id='query_3')

                    with gr.Row():
                        random_btn_3 = gr.Button(value='๐Ÿ”ฎ Random', visible=False)

                        reset_btn_3 = gr.ClearButton([media_3, query_3, msk_3, ans_3], value='๐Ÿ—‘๏ธ Reset')
                        reset_btn_3.click(reset_reg, None, [prompt_frame_index_3, download_btn_3])

                        submit_btn_3 = gr.Button(value='๐Ÿš€ Submit', variant='primary', elem_id='submit_3')

                with gr.Column():
                    msk_3.render()
                    ans_3.render()

            ctx_3 = submit_btn_3.click(disable_btns, None, [random_btn_3, reset_btn_3, download_btn_3, submit_btn_3])
            ctx_3 = ctx_3.then(infer_reg, [media_3, query_3, prompt_frame_index_3], ans_3)
            ctx_3.then(enable_btns, None, [random_btn_3, reset_btn_3, download_btn_3, submit_btn_3])

        with gr.Tab('Video Regional Understanding'):
            download_btn_4 = gr.DownloadButton(visible=False)
            prompt_frame_index_4 = gr.Slider(
                1,
                16,
                value=1,
                step=1,
                interactive=True,
                label='Prompt Frame Index',
                info='The index of the frame to apply mask prompts (Default: 1)',
                render=False)
            msk_4 = gr.ImageEditor(
                label='Mask Prompt',
                brush=gr.Brush(colors=['#ff000080'], color_mode='fixed'),
                transforms=None,
                layers=False,
                interactive=False,
                render=False)
            ans_4 = gr.HighlightedText(label='Model Response', show_inline_category=False, render=False)

            with gr.Row():
                with gr.Column():
                    media_4 = gr.Video()
                    media_4.change(update_video, [media_4, prompt_frame_index_4], msk_4)

                    with gr.Accordion(label='Hyperparameters', open=False):
                        prompt_frame_index_4.render()
                        prompt_frame_index_4.change(update_video, [media_4, prompt_frame_index_4], msk_4)

                    query_4 = gr.Textbox(
                        label='Text Prompt', placeholder='Please describe the highlighted region...', elem_id='query_4')

                    with gr.Row():
                        random_btn_4 = gr.Button(value='๐Ÿ”ฎ Random', visible=False)

                        reset_btn_4 = gr.ClearButton([media_4, query_4, msk_4, ans_4], value='๐Ÿ—‘๏ธ Reset')
                        reset_btn_4.click(reset_reg, None, [prompt_frame_index_4, download_btn_4])

                        submit_btn_4 = gr.Button(value='๐Ÿš€ Submit', variant='primary', elem_id='submit_4')

                with gr.Column():
                    msk_4.render()
                    ans_4.render()

            ctx_4 = submit_btn_4.click(disable_btns, None, [random_btn_4, reset_btn_4, download_btn_4, submit_btn_4])
            ctx_4 = ctx_4.then(infer_reg, [msk_4, query_4, prompt_frame_index_4, media_4], ans_4)
            ctx_4.then(enable_btns, None, [random_btn_4, reset_btn_4, download_btn_4, submit_btn_4])

    return demo


if __name__ == '__main__':
    demo = build_demo()

    demo.queue()
    demo.launch(server_name='0.0.0.0')