Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,495 Bytes
f880dff 214dc2c f880dff 214dc2c f880dff 41e934b f880dff 41e934b f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 41e934b f880dff 41e934b f880dff 41e934b f880dff 41e934b f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff 214dc2c f880dff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 |
# Copyright (c) 2025 Ye Liu. Licensed under the BSD-3-Clause license.
import re
import uuid
from functools import partial
import gradio as gr
import imageio.v3 as iio
import spaces
import torch
import torch.nn.functional as F
import torchvision.transforms.functional as T
from PIL import Image
from unipixel.constants import MEM_TOKEN, SEG_TOKEN
from unipixel.dataset.utils import process_vision_info
from unipixel.model.builder import build_model
from unipixel.utils.io import load_image, load_video
from unipixel.utils.transforms import get_sam2_transform
from unipixel.utils.visualizer import draw_mask, sample_color
MODEL = 'PolyU-ChenLab/UniPixel-3B'
TITLE = 'UniPixel: Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning'
HEADER = """
<p align="center" style="margin: 1em 0 2em;"><img width="260" src="https://raw.githubusercontent.com/PolyU-ChenLab/UniPixel/refs/heads/main/.github/logo.png"></p>
<h3 align="center">Unified Object Referring and Segmentation for Pixel-Level Visual Reasoning</h3>
<div style="display: flex; justify-content: center; gap: 5px;">
<a href="https://arxiv.org/abs/2509.18094" target="_blank"><img src="https://img.shields.io/badge/arXiv-2509.18094-red"></a>
<a href="https://polyu-chenlab.github.io/unipixel/" target="_blank"><img src="https://img.shields.io/badge/Project-Page-brightgreen"></a>
<a href="https://huggingface.co/collections/PolyU-ChenLab/unipixel-68cf7137013455e5b15962e8" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Model-blue"></a>
<a href="https://huggingface.co/datasets/PolyU-ChenLab/UniPixel-SFT-1M" target="_blank"><img src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Dataset-orange"></a>
<a href="https://github.com/PolyU-ChenLab/UniPixel/blob/main/README.md" target="_blank"><img src="https://img.shields.io/badge/License-BSD--3--Clause-purple"></a>
<a href="https://github.com/PolyU-ChenLab/UniPixel" target="_blank"><img src="https://img.shields.io/github/stars/PolyU-ChenLab/UniPixel"></a>
</div>
<p style="margin-top: 1em;">UniPixel is a unified MLLM for pixel-level vision-language understanding. It flexibly supports a variety of fine-grained tasks, including image/video segmentation, regional understanding, and a novel PixelQA task that jointly requires object-centric referring, segmentation, and question-answering in videos. Please open an <a href="https://github.com/PolyU-ChenLab/UniPixel/issues/new" target="_blank">issue</a> if you meet any problems.</p>
"""
# https://github.com/gradio-app/gradio/pull/10552
JS = """
function init() {
if (window.innerWidth >= 1536) {
document.querySelector('main').style.maxWidth = '1536px'
}
document.getElementById('query_1').addEventListener('keydown', function f1(e) { if (e.key === 'Enter') { document.getElementById('submit_1').click() } })
document.getElementById('query_2').addEventListener('keydown', function f2(e) { if (e.key === 'Enter') { document.getElementById('submit_2').click() } })
document.getElementById('query_3').addEventListener('keydown', function f3(e) { if (e.key === 'Enter') { document.getElementById('submit_3').click() } })
document.getElementById('query_4').addEventListener('keydown', function f4(e) { if (e.key === 'Enter') { document.getElementById('submit_4').click() } })
}
"""
model, processor = build_model(MODEL, attn_implementation='sdpa')
sam2_transform = get_sam2_transform(model.config.sam2_image_size)
device = torch.device('cuda')
colors = sample_color()
color_map = {f'Target {i + 1}': f'#{int(c[0]):02x}{int(c[1]):02x}{int(c[2]):02x}' for i, c in enumerate(colors * 255)}
color_map_light = {
f'Target {i + 1}': f'#{int(c[0] * 127.5 + 127.5):02x}{int(c[1] * 127.5 + 127.5):02x}{int(c[2] * 127.5 + 127.5):02x}'
for i, c in enumerate(colors)
}
def enable_btns():
return (gr.Button(interactive=True), ) * 4
def disable_btns():
return (gr.Button(interactive=False), ) * 4
def reset_seg():
return 16, gr.Button(interactive=False)
def reset_reg():
return 1, gr.Button(interactive=False)
def update_region(blob):
if blob['background'] is None or not blob['layers'][0].any():
return
region = blob['background'].copy()
region[blob['layers'][0][:, :, -1] == 0] = [0, 0, 0, 0]
return region
def update_video(video, prompt_idx):
if video is None:
return gr.ImageEditor(value=None, interactive=False)
_, images = load_video(video, sample_frames=16)
component = gr.ImageEditor(value=images[prompt_idx - 1], interactive=True)
return component
@spaces.GPU
def infer_seg(media, query, sample_frames=16, media_type=None):
global model
if not media:
gr.Warning('Please upload an image or a video.')
return None, None, None
if not query:
gr.Warning('Please provide a text prompt.')
return None, None, None
if any(media.endswith(k) for k in ('jpg', 'png')):
frames, images = load_image(media), [media]
else:
frames, images = load_video(media, sample_frames=sample_frames)
messages = [{
'role':
'user',
'content': [{
'type': 'video',
'video': images,
'min_pixels': 128 * 28 * 28,
'max_pixels': 256 * 28 * 28 * int(sample_frames / len(images))
}, {
'type': 'text',
'text': query
}]
}]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
images, videos, kwargs = process_vision_info(messages, return_video_kwargs=True)
data = processor(text=[text], images=images, videos=videos, return_tensors='pt', **kwargs)
data['frames'] = [sam2_transform(frames).to(model.sam2.dtype)]
data['frame_size'] = [frames.shape[1:3]]
model = model.to(device)
output_ids = model.generate(
**data.to(device),
do_sample=False,
temperature=None,
top_k=None,
top_p=None,
repetition_penalty=None,
max_new_tokens=512)
assert data.input_ids.size(0) == output_ids.size(0) == 1
output_ids = output_ids[0, data.input_ids.size(1):]
if output_ids[-1] == processor.tokenizer.eos_token_id:
output_ids = output_ids[:-1]
response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
response = response.replace(f' {SEG_TOKEN}', SEG_TOKEN).replace(f'{SEG_TOKEN} ', SEG_TOKEN)
entities = []
for i, m in enumerate(re.finditer(re.escape(SEG_TOKEN), response)):
entities.append(dict(entity=f'Target {i + 1}', start=m.start(), end=m.end()))
answer = dict(text=response, entities=entities)
imgs = draw_mask(frames, model.seg, colors=colors)
path = f"/tmp/{uuid.uuid4().hex}.{'gif' if len(imgs) > 1 else 'png'}"
iio.imwrite(path, imgs, duration=100, loop=0)
if media_type == 'image':
if len(model.seg) >= 1:
masks = media, [(m[0, 0].numpy(), f'Target {i + 1}') for i, m in enumerate(model.seg)]
else:
masks = None
else:
masks = path
return answer, masks, path
infer_seg_image = partial(infer_seg, media_type='image')
infer_seg_video = partial(infer_seg, media_type='video')
@spaces.GPU
def infer_reg(blob, query, prompt_idx=1, video=None):
global model
if blob['background'] is None:
gr.Warning('Please upload an image or a video.')
return
if not blob['layers'][0].any():
gr.Warning('Please provide a mask prompt.')
return
if not query:
gr.Warning('Please provide a text prompt.')
return
if video is None:
frames = torch.from_numpy(blob['background'][:, :, :3]).unsqueeze(0)
images = [Image.fromarray(blob['background'], mode='RGBA')]
else:
frames, images = load_video(video, sample_frames=16)
frame_size = frames.shape[1:3]
mask = torch.from_numpy(blob['layers'][0][:, :, -1]).unsqueeze(0) > 0
refer_mask = torch.zeros(frames.size(0), 1, *frame_size)
refer_mask[prompt_idx - 1] = mask
if refer_mask.size(0) % 2 != 0:
refer_mask = torch.cat((refer_mask, refer_mask[-1, None]))
refer_mask = refer_mask.flatten(1)
refer_mask = F.max_pool1d(refer_mask.transpose(-1, -2), kernel_size=2, stride=2).transpose(-1, -2)
refer_mask = refer_mask.view(-1, 1, *frame_size)
if video is None:
prefix = f'Here is an image with the following highlighted regions:\n[0]: <{prompt_idx}> {MEM_TOKEN}\n'
else:
prefix = f'Here is a video with {len(images)} frames denoted as <1> to <{len(images)}>. The highlighted regions are as follows:\n[0]: <{prompt_idx}>-<{prompt_idx + 1}> {MEM_TOKEN}\n'
messages = [{
'role':
'user',
'content': [{
'type': 'video',
'video': images,
'min_pixels': 128 * 28 * 28,
'max_pixels': 256 * 28 * 28 * int(16 / len(images))
}, {
'type': 'text',
'text': prefix + query
}]
}]
text = processor.apply_chat_template(messages, add_generation_prompt=True)
images, videos, kwargs = process_vision_info(messages, return_video_kwargs=True)
data = processor(text=[text], images=images, videos=videos, return_tensors='pt', **kwargs)
refer_mask = T.resize(refer_mask, (data['video_grid_thw'][0][1] * 14, data['video_grid_thw'][0][2] * 14))
refer_mask = F.max_pool2d(refer_mask, kernel_size=28, stride=28)
refer_mask = refer_mask > 0
data['frames'] = [sam2_transform(frames).to(model.sam2.dtype)]
data['frame_size'] = [frames.shape[1:3]]
data['refer_mask'] = [refer_mask]
model = model.to(device)
output_ids = model.generate(
**data.to(device),
do_sample=False,
temperature=None,
top_k=None,
top_p=None,
repetition_penalty=None,
max_new_tokens=512)
assert data.input_ids.size(0) == output_ids.size(0) == 1
output_ids = output_ids[0, data.input_ids.size(1):]
if output_ids[-1] == processor.tokenizer.eos_token_id:
output_ids = output_ids[:-1]
response = processor.decode(output_ids, clean_up_tokenization_spaces=False)
response = response.replace(' [0]', '[0]').replace('[0] ', '[0]').replace('[0]', '<REGION>')
entities = []
for m in re.finditer(re.escape('<REGION>'), response):
entities.append(dict(entity='region', start=m.start(), end=m.end(), color="#f85050"))
answer = dict(text=response, entities=entities)
return answer
def build_demo():
with gr.Blocks(title=TITLE, js=JS, theme=gr.themes.Soft()) as demo:
gr.HTML(HEADER)
with gr.Tab('Image Segmentation'):
download_btn_1 = gr.DownloadButton(label='๐ฆ Download', interactive=False, render=False)
msk_1 = gr.AnnotatedImage(label='Segmentation Results', color_map=color_map, render=False)
ans_1 = gr.HighlightedText(
label='Model Response', color_map=color_map_light, show_inline_category=False, render=False)
with gr.Row():
with gr.Column():
media_1 = gr.Image(type='filepath')
sample_frames_1 = gr.Slider(1, 32, value=16, step=1, visible=False)
query_1 = gr.Textbox(label='Text Prompt', placeholder='Please segment the...', elem_id='query_1')
with gr.Row():
random_btn_1 = gr.Button(value='๐ฎ Random', visible=False)
reset_btn_1 = gr.ClearButton([media_1, query_1, msk_1, ans_1], value='๐๏ธ Reset')
reset_btn_1.click(reset_seg, None, [sample_frames_1, download_btn_1])
download_btn_1.render()
submit_btn_1 = gr.Button(value='๐ Submit', variant='primary', elem_id='submit_1')
with gr.Column():
msk_1.render()
ans_1.render()
ctx_1 = submit_btn_1.click(disable_btns, None, [random_btn_1, reset_btn_1, download_btn_1, submit_btn_1])
ctx_1 = ctx_1.then(infer_seg_image, [media_1, query_1, sample_frames_1], [ans_1, msk_1, download_btn_1])
ctx_1.then(enable_btns, None, [random_btn_1, reset_btn_1, download_btn_1, submit_btn_1])
with gr.Tab('Video Segmentation'):
download_btn_2 = gr.DownloadButton(label='๐ฆ Download', interactive=False, render=False)
msk_2 = gr.Image(label='Segmentation Results', render=False)
ans_2 = gr.HighlightedText(
label='Model Response', color_map=color_map_light, show_inline_category=False, render=False)
with gr.Row():
with gr.Column():
media_2 = gr.Video()
with gr.Accordion(label='Hyperparameters', open=False):
sample_frames_2 = gr.Slider(
1,
32,
value=16,
step=1,
interactive=True,
label='Sample Frames',
info='The number of frames to sample from a video (Default: 16)')
query_2 = gr.Textbox(label='Text Prompt', placeholder='Please segment the...', elem_id='query_2')
with gr.Row():
random_btn_2 = gr.Button(value='๐ฎ Random', visible=False)
reset_btn_2 = gr.ClearButton([media_2, query_2, msk_2, ans_2], value='๐๏ธ Reset')
reset_btn_2.click(reset_seg, None, [sample_frames_2, download_btn_2])
download_btn_2.render()
submit_btn_2 = gr.Button(value='๐ Submit', variant='primary', elem_id='submit_2')
with gr.Column():
msk_2.render()
ans_2.render()
ctx_2 = submit_btn_2.click(disable_btns, None, [random_btn_2, reset_btn_2, download_btn_2, submit_btn_2])
ctx_2 = ctx_2.then(infer_seg_video, [media_2, query_2, sample_frames_2], [ans_2, msk_2, download_btn_2])
ctx_2.then(enable_btns, None, [random_btn_2, reset_btn_2, download_btn_2, submit_btn_2])
with gr.Tab('Image Regional Understanding'):
download_btn_3 = gr.DownloadButton(visible=False)
msk_3 = gr.Image(label='Highlighted Region', render=False)
ans_3 = gr.HighlightedText(label='Model Response', show_inline_category=False, render=False)
with gr.Row():
with gr.Column():
media_3 = gr.ImageEditor(
label='Image & Mask Prompt',
brush=gr.Brush(colors=["#ff000080"], color_mode='fixed'),
transforms=None,
layers=False)
media_3.change(update_region, media_3, msk_3)
prompt_frame_index_3 = gr.Slider(1, 16, value=1, step=1, visible=False)
query_3 = gr.Textbox(
label='Text Prompt', placeholder='Please describe the highlighted region...', elem_id='query_3')
with gr.Row():
random_btn_3 = gr.Button(value='๐ฎ Random', visible=False)
reset_btn_3 = gr.ClearButton([media_3, query_3, msk_3, ans_3], value='๐๏ธ Reset')
reset_btn_3.click(reset_reg, None, [prompt_frame_index_3, download_btn_3])
submit_btn_3 = gr.Button(value='๐ Submit', variant='primary', elem_id='submit_3')
with gr.Column():
msk_3.render()
ans_3.render()
ctx_3 = submit_btn_3.click(disable_btns, None, [random_btn_3, reset_btn_3, download_btn_3, submit_btn_3])
ctx_3 = ctx_3.then(infer_reg, [media_3, query_3, prompt_frame_index_3], ans_3)
ctx_3.then(enable_btns, None, [random_btn_3, reset_btn_3, download_btn_3, submit_btn_3])
with gr.Tab('Video Regional Understanding'):
download_btn_4 = gr.DownloadButton(visible=False)
prompt_frame_index_4 = gr.Slider(
1,
16,
value=1,
step=1,
interactive=True,
label='Prompt Frame Index',
info='The index of the frame to apply mask prompts (Default: 1)',
render=False)
msk_4 = gr.ImageEditor(
label='Mask Prompt',
brush=gr.Brush(colors=['#ff000080'], color_mode='fixed'),
transforms=None,
layers=False,
interactive=False,
render=False)
ans_4 = gr.HighlightedText(label='Model Response', show_inline_category=False, render=False)
with gr.Row():
with gr.Column():
media_4 = gr.Video()
media_4.change(update_video, [media_4, prompt_frame_index_4], msk_4)
with gr.Accordion(label='Hyperparameters', open=False):
prompt_frame_index_4.render()
prompt_frame_index_4.change(update_video, [media_4, prompt_frame_index_4], msk_4)
query_4 = gr.Textbox(
label='Text Prompt', placeholder='Please describe the highlighted region...', elem_id='query_4')
with gr.Row():
random_btn_4 = gr.Button(value='๐ฎ Random', visible=False)
reset_btn_4 = gr.ClearButton([media_4, query_4, msk_4, ans_4], value='๐๏ธ Reset')
reset_btn_4.click(reset_reg, None, [prompt_frame_index_4, download_btn_4])
submit_btn_4 = gr.Button(value='๐ Submit', variant='primary', elem_id='submit_4')
with gr.Column():
msk_4.render()
ans_4.render()
ctx_4 = submit_btn_4.click(disable_btns, None, [random_btn_4, reset_btn_4, download_btn_4, submit_btn_4])
ctx_4 = ctx_4.then(infer_reg, [msk_4, query_4, prompt_frame_index_4, media_4], ans_4)
ctx_4.then(enable_btns, None, [random_btn_4, reset_btn_4, download_btn_4, submit_btn_4])
return demo
if __name__ == '__main__':
demo = build_demo()
demo.queue()
demo.launch(server_name='0.0.0.0')
|