Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import whisper | |
| from transformers import pipeline | |
| model = whisper.load_model("base") | |
| sentiment_analysis = pipeline("sentiment-analysis", framework="pt", model="SamLowe/roberta-base-go_emotions") | |
| def analyze_sentiment(text): | |
| results = sentiment_analysis(text) | |
| sentiment_results = {result['label']: result['score'] for result in results} | |
| return sentiment_results | |
| def get_sentiment_emoji(sentiment): | |
| # Define the emojis corresponding to each sentiment | |
| emoji_mapping = { | |
| "disappointment": "😞", | |
| "sadness": "😢", | |
| "annoyance": "😠", | |
| "neutral": "😐", | |
| "disapproval": "👎", | |
| "realization": "😮", | |
| "nervousness": "😬", | |
| "approval": "👍", | |
| "joy": "😄", | |
| "anger": "😡", | |
| "embarrassment": "😳", | |
| "caring": "🤗", | |
| "remorse": "😔", | |
| "disgust": "🤢", | |
| "grief": "😥", | |
| "confusion": "😕", | |
| "relief": "😌", | |
| "desire": "😍", | |
| "admiration": "😌", | |
| "optimism": "😊", | |
| "fear": "😨", | |
| "love": "❤️", | |
| "excitement": "🎉", | |
| "curiosity": "🤔", | |
| "amusement": "😄", | |
| "surprise": "😲", | |
| "gratitude": "🙏", | |
| "pride": "🦁" | |
| } | |
| return emoji_mapping.get(sentiment, "") | |
| def display_sentiment_results(sentiment_results, option): | |
| sentiment_text = "" | |
| for sentiment, score in sentiment_results.items(): | |
| emoji = get_sentiment_emoji(sentiment) | |
| if option == "Sentiment Only": | |
| sentiment_text += f"{sentiment} {emoji}\n" | |
| elif option == "Sentiment + Score": | |
| sentiment_text += f"{sentiment} {emoji}: {score}\n" | |
| return sentiment_text | |
| def inference(audio, sentiment_option): | |
| audio = whisper.load_audio(audio) | |
| audio = whisper.pad_or_trim(audio) | |
| mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
| _, probs = model.detect_language(mel) | |
| lang = max(probs, key=probs.get) | |
| options = whisper.DecodingOptions(fp16=False) | |
| result = whisper.decode(model, mel, options) | |
| sentiment_results = analyze_sentiment(result.text) | |
| sentiment_output = display_sentiment_results(sentiment_results, sentiment_option) | |
| return lang.upper(), result.text, sentiment_output | |
| title = """<h1 align="center">🎤 Multilingual ASR 💬</h1>""" | |
| image_path = "thmbnail.jpg" | |
| description = """ | |
| 💻 This demo showcases a general-purpose speech recognition model called Whisper. It is trained on a large dataset of diverse audio and supports multilingual speech recognition, speech translation, and language identification tasks.<br><br> | |
| <br> | |
| ⚙️ Components of the tool:<br> | |
| <br> | |
| - Real-time multilingual speech recognition<br> | |
| - Language identification<br> | |
| - Sentiment analysis of the transcriptions<br> | |
| <br> | |
| 🎯 The sentiment analysis results are provided as a dictionary with different emotions and their corresponding scores.<br> | |
| <br> | |
| 😃 The sentiment analysis results are displayed with emojis representing the corresponding sentiment.<br> | |
| <br> | |
| ✅ The higher the score for a specific emotion, the stronger the presence of that emotion in the transcribed text.<br> | |
| <br> | |
| ❓ Use the microphone for real-time speech recognition.<br> | |
| <br> | |
| ⚡️ The model will transcribe the audio and perform sentiment analysis on the transcribed text.<br> | |
| """ | |
| custom_css = """ | |
| #banner-image { | |
| display: block; | |
| margin-left: auto; | |
| margin-right: auto; | |
| } | |
| #chat-message { | |
| font-size: 14px; | |
| min-height: 300px; | |
| } | |
| """ | |
| block = gr.Blocks(css=custom_css) | |
| with block: | |
| gr.HTML(title) | |
| with gr.Row(): | |
| with gr.Column(): | |
| gr.Image(image_path, elem_id="banner-image", show_label=False) | |
| with gr.Column(): | |
| gr.HTML(description) | |
| with gr.Group(): | |
| with gr.Box(): | |
| audio = gr.Audio( | |
| label="Input Audio", | |
| show_label=False, | |
| source="microphone", | |
| type="filepath" | |
| ) | |
| sentiment_option = gr.Radio( | |
| choices=["Sentiment Only", "Sentiment + Score"], | |
| label="Select an option", | |
| default="Sentiment Only" | |
| ) | |
| btn = gr.Button("Transcribe") | |
| lang_str = gr.Textbox(label="Language") | |
| text = gr.Textbox(label="Transcription") | |
| sentiment_output = gr.Textbox(label="Sentiment Analysis Results", output=True) | |
| btn.click(inference, inputs=[audio, sentiment_option], outputs=[lang_str, text, sentiment_output]) | |
| gr.HTML(''' | |
| <div class="footer"> | |
| <p>Model by <a href="https://github.com/openai/whisper" style="text-decoration: underline;" target="_blank">OpenAI</a> | |
| </p> | |
| </div> | |
| ''') | |
| block.launch() | |