Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import jax
|
| 4 |
+
import numpy as np
|
| 5 |
+
import jax.numpy as jnp # JAX NumPy
|
| 6 |
+
from flax.training import train_state # Useful dataclass to keep train state
|
| 7 |
+
from flax import linen as nn # Linen API
|
| 8 |
+
from huggingface_hub import HfFileSystem
|
| 9 |
+
from flax.serialization import msgpack_restore, from_state_dict
|
| 10 |
+
import os
|
| 11 |
+
import tensorflow as tf
|
| 12 |
+
|
| 13 |
+
hf_key = text_input = st.text_input("Access token")
|
| 14 |
+
|
| 15 |
+
class CNN(nn.Module):
|
| 16 |
+
"""A simple CNN model."""
|
| 17 |
+
|
| 18 |
+
@nn.compact
|
| 19 |
+
def __call__(self, x):
|
| 20 |
+
x = nn.Conv(features=32, kernel_size=(3, 3))(x)
|
| 21 |
+
x = nn.relu(x)
|
| 22 |
+
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
|
| 23 |
+
x = nn.Conv(features=64, kernel_size=(3, 3))(x)
|
| 24 |
+
x = nn.relu(x)
|
| 25 |
+
x = nn.avg_pool(x, window_shape=(2, 2), strides=(2, 2))
|
| 26 |
+
x = x.reshape((x.shape[0], -1)) # flatten
|
| 27 |
+
x = nn.Dense(features=256)(x)
|
| 28 |
+
x = nn.relu(x)
|
| 29 |
+
x = nn.Dense(features=16)(x)
|
| 30 |
+
x = nn.relu(x)
|
| 31 |
+
x = nn.Dense(features=2)(x)
|
| 32 |
+
return x
|
| 33 |
+
|
| 34 |
+
cnn = CNN()
|
| 35 |
+
params = cnn.init(jax.random.PRNGKey(0), jnp.ones([1, 50, 50, 3]))['params']
|
| 36 |
+
|
| 37 |
+
fs = HfFileSystem(token=hf_key)
|
| 38 |
+
with fs.open("PrakhAI/CatVsDog/checkpoint.msgpack", "rb") as f:
|
| 39 |
+
params = from_state_dict(params, msgpack_restore(f.read())["params"])
|
| 40 |
+
|
| 41 |
+
uploaded_files = st.file_uploader("Input images of cats or dogs (examples in files)", type=['jpg','png','tif'], accept_multiple_files=True)
|
| 42 |
+
|
| 43 |
+
if len(uploaded_files) == 0:
|
| 44 |
+
st.write("Please upload an image!")
|
| 45 |
+
else:
|
| 46 |
+
for uploaded_file in uploaded_files:
|
| 47 |
+
img = Image.open(uploaded_file)
|
| 48 |
+
st.image(img)
|
| 49 |
+
input = tf.image_resize(tf.convert_to_tensor(img), [50, 50])
|
| 50 |
+
st.write("Model Prediction: " + cnn.apply({"params": params}, input))
|
| 51 |
+
st.write("Model Prediction type: " + type(cnn.apply({"params": params}, input)))
|
| 52 |
+
st.write("Model Prediction type dir: " + dir(cnn.apply({"params": params}, input)))
|
| 53 |
+
|
| 54 |
+
def gridify(kernel, grid, kernel_size, scaling=5, padding=1):
|
| 55 |
+
scaled_and_padded = np.pad(np.repeat(np.repeat(kernel, repeats=scaling, axis=0), repeats=scaling, axis=1), ((padding,),(padding,),(0,),(0,)), 'constant', constant_values=(-1,))
|
| 56 |
+
grid = np.pad(np.array(scaled_and_padded.reshape((kernel_size[0]*scaling+2*padding, kernel_size[1]*scaling+2*padding, grid[0], grid[1])).transpose(2,0,3,1).reshape(grid[0]*(kernel_size[0]*scaling+2*padding), grid[1]*(kernel_size[1]*scaling+2*padding))+1)*127., (padding,), 'constant', constant_values=(0,))
|
| 57 |
+
st.image(Image.fromarray(np.repeat(np.expand_dims(grid, axis=0), repeats=3, axis=0).astype(np.uint8).transpose(1,2,0), mode="RGB"))
|
| 58 |
+
|
| 59 |
+
with st.expander("See first convolutional layer"):
|
| 60 |
+
gridify(params["Conv_0"]["kernel"], grid=(4,8), kernel_size=(3,3))
|
| 61 |
+
|
| 62 |
+
with st.expander("See second convolutional layer"):
|
| 63 |
+
print(params["Conv_1"]["kernel"].shape)
|
| 64 |
+
gridify(params["Conv_1"]["kernel"], grid=(32,64), kernel_size=(3,3))
|