Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import pipeline | |
| from datasets import Dataset, DatasetDict | |
| import pandas as pd | |
| import numpy as np | |
| from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,Trainer, TrainingArguments | |
| model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect') | |
| tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256) | |
| def predict(text): | |
| # Convert test dataframe to Hugging Face dataset | |
| test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text'])) | |
| # Apply the tokenization function to the train dataset | |
| train_dataset1 = test_dataset.map(tokenize_function, batched=True,) | |
| predictions, label_probs, _ = trainer.predict(train_dataset1) | |
| y_pred = np.argmax(predictions, axis=1) | |
| return y_pred | |
| def tokenize_function(examples): | |
| return tokenizer(examples['text'], padding=True, truncation=True, | |
| max_length=256) | |
| test_args = TrainingArguments( | |
| do_train=False, | |
| do_predict=True, | |
| per_device_eval_batch_size = 2 | |
| ) | |
| trainer = Trainer( | |
| model=model, | |
| args=test_args, | |
| ) | |
| iface = gr.Interface(fn=predict, inputs="text", outputs="text") | |
| iface.launch() |