Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,18 +1,39 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
|
| 7 |
def predict(text):
|
| 8 |
# Convert test dataframe to Hugging Face dataset
|
| 9 |
-
test_dataset = Dataset.from_pandas(text)
|
| 10 |
|
| 11 |
# Apply the tokenization function to the train dataset
|
| 12 |
-
|
| 13 |
predictions, label_probs, _ = trainer.predict(train_dataset1)
|
| 14 |
y_pred = np.argmax(predictions, axis=1)
|
| 15 |
return y_pred
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
| 18 |
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from transformers import pipeline
|
| 3 |
+
from datasets import Dataset, DatasetDict
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import RobertaTokenizerFast, RobertaForSequenceClassification,Trainer, TrainingArguments
|
| 7 |
|
| 8 |
+
model = RobertaForSequenceClassification.from_pretrained('Prakhar618/Gptdetect')
|
| 9 |
+
tokenizer = RobertaTokenizerFast.from_pretrained('Prakhar618/Gptdetect', max_length = 256)
|
| 10 |
|
| 11 |
|
| 12 |
def predict(text):
|
| 13 |
# Convert test dataframe to Hugging Face dataset
|
| 14 |
+
test_dataset = Dataset.from_pandas(pd.DataFrame(text,columns=['text']))
|
| 15 |
|
| 16 |
# Apply the tokenization function to the train dataset
|
| 17 |
+
train_dataset1 = test_dataset.map(tokenize_function, batched=True,)
|
| 18 |
predictions, label_probs, _ = trainer.predict(train_dataset1)
|
| 19 |
y_pred = np.argmax(predictions, axis=1)
|
| 20 |
return y_pred
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def tokenize_function(examples):
|
| 24 |
+
return tokenizer(examples['text'], padding=True, truncation=True,
|
| 25 |
+
max_length=256)
|
| 26 |
+
|
| 27 |
+
test_args = TrainingArguments(
|
| 28 |
+
do_train=False,
|
| 29 |
+
do_predict=True,
|
| 30 |
+
per_device_eval_batch_size = 2
|
| 31 |
+
|
| 32 |
+
)
|
| 33 |
+
trainer = Trainer(
|
| 34 |
+
model=model,
|
| 35 |
+
args=test_args,
|
| 36 |
+
)
|
| 37 |
|
| 38 |
iface = gr.Interface(fn=predict, inputs="text", outputs="text")
|
| 39 |
iface.launch()
|