Spaces:
Running
Running
| import gradio as gr | |
| import tensorflow as tf | |
| import numpy as np | |
| import cv2 | |
| import os | |
| from main import tensor_to_image,StyleContentModel, run_style_transfer | |
| # Define layers and instantiate the model once globally | |
| content_layers = ['block5_conv2'] | |
| style_layers = ['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'] | |
| extractor = StyleContentModel(style_layers, content_layers) | |
| def style_transfer_wrapper(content_img_np, style_img_np): | |
| """ | |
| A wrapper to handle I/O for the Gradio interface. | |
| Saves numpy arrays to temp files to use with the main function. | |
| """ | |
| if content_img_np is None or style_img_np is None: | |
| return None # Return None if either image is missing | |
| # Save numpy arrays to temporary files | |
| content_path = "temp_content.jpg" | |
| style_path = "temp_style.jpg" | |
| # Gradio provides RGB, but cv2 saves in BGR order | |
| cv2.imwrite(content_path, cv2.cvtColor(content_img_np, cv2.COLOR_RGB2BGR)) | |
| cv2.imwrite(style_path, cv2.cvtColor(style_img_np, cv2.COLOR_RGB2BGR)) | |
| # Run the main process (using fewer iterations for a faster demo) | |
| final_tensor = run_style_transfer(content_path, style_path, iterations=500) | |
| # Convert tensor to displayable image | |
| final_image = tensor_to_image(final_tensor) | |
| # Clean up temporary files | |
| os.remove(content_path) | |
| os.remove(style_path) | |
| return final_image | |
| ## 4. GRADIO UI DEFINITION ## | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# 🎨 Neural Style Transfer") | |
| gr.Markdown("Combine the content of one image with the artistic style of another. This demo uses a VGG19 model. Processing can take a minute, especially on CPU.") | |
| with gr.Row(): | |
| content_img = gr.Image(label="Content Image", type="numpy") | |
| style_img = gr.Image(label="Style Image", type="numpy") | |
| run_button = gr.Button("Generate Image", variant="primary") | |
| output_img = gr.Image(label="Result") | |
| run_button.click( | |
| fn=style_transfer_wrapper, | |
| inputs=[content_img, style_img], | |
| outputs=output_img | |
| ) | |
| gr.Markdown("---") | |
| gr.Markdown("Based on the paper '[A Neural Algorithm of Artistic Style](https://arxiv.org/abs/1508.06576)' by Gatys et al.") | |
| # Launch the Gradio app | |
| demo.launch(share=True,debug=True) |