File size: 89,017 Bytes
afdbdf1 815f644 afdbdf1 24ad993 afdbdf1 2368b12 e1fe35c 9df8bbb 815f644 dbc3943 815f644 497bdef 2368b12 af9af94 815f644 497bdef ba7ecea 497bdef 2368b12 afdbdf1 ba7ecea afdbdf1 2368b12 afdbdf1 497bdef 2368b12 497bdef afdbdf1 aa79c8d 497bdef e2fe43e 81564e3 afdbdf1 81564e3 afdbdf1 e2fe43e 0089e11 2bf1917 0089e11 2bf1917 0089e11 2bf1917 0089e11 2bf1917 61e1b8d 0089e11 61e1b8d afdbdf1 e2fe43e afdbdf1 e2fe43e 491f92c 2368b12 afdbdf1 815f644 afdbdf1 815f644 afdbdf1 815f644 497bdef e1fe35c 497bdef a01dfca 81714ca afdbdf1 a01dfca afdbdf1 497bdef afdbdf1 497bdef 2368b12 afdbdf1 497bdef 1ac8346 497bdef e2fe43e afdbdf1 e2fe43e afdbdf1 e2fe43e a01dfca ba7ecea b844ec2 857d9f8 b844ec2 857d9f8 afdbdf1 0089e11 2bf1917 61e1b8d 2bf1917 61e1b8d 2bf1917 0089e11 61e1b8d 497bdef a01dfca afdbdf1 81564e3 afdbdf1 ba7ecea afdbdf1 ba7ecea afdbdf1 81564e3 afdbdf1 ba7ecea afdbdf1 ba7ecea a01dfca 81714ca 497bdef 815f644 a01dfca 815f644 a01dfca f6ce266 afdbdf1 81564e3 a01dfca 81564e3 ba7ecea 81564e3 afdbdf1 81564e3 afdbdf1 81564e3 a01dfca 497bdef afdbdf1 a01dfca afdbdf1 351dad6 afdbdf1 81564e3 afdbdf1 ba7ecea afdbdf1 ba7ecea afdbdf1 a01dfca afdbdf1 a01dfca afdbdf1 e2fe43e 00b40e2 afdbdf1 81564e3 afdbdf1 ba7ecea afdbdf1 ba7ecea afdbdf1 00b40e2 afdbdf1 ba7ecea e2fe43e afdbdf1 a3ee38f afdbdf1 ba7ecea afdbdf1 83db361 497bdef afdbdf1 e2fe43e afdbdf1 e2fe43e afdbdf1 81564e3 afdbdf1 81564e3 9f95176 497bdef 2368b12 e2fe43e 497bdef afdbdf1 e2fe43e afdbdf1 2368b12 afdbdf1 2368b12 afdbdf1 2368b12 afdbdf1 2368b12 afdbdf1 2368b12 afdbdf1 2368b12 afdbdf1 81714ca afdbdf1 81714ca afdbdf1 e2fe43e afdbdf1 e2fe43e afdbdf1 e2fe43e afdbdf1 ba7ecea e2fe43e afdbdf1 ba7ecea afdbdf1 e2fe43e 34afe78 491f92c 34afe78 491f92c 34afe78 491f92c 34afe78 491f92c 34afe78 491f92c 497bdef 2368b12 497bdef e1fe35c 497bdef 2368b12 497bdef 2368b12 dbc3943 497bdef 2368b12 497bdef 2368b12 497bdef 2368b12 497bdef 2368b12 497bdef e1fe35c 497bdef 2368b12 497bdef 2368b12 e1fe35c 2368b12 497bdef 2368b12 497bdef 2368b12 497bdef 2368b12 497bdef 2368b12 497bdef e1fe35c 2368b12 497bdef 2368b12 497bdef 1458a83 497bdef 1458a83 497bdef 2368b12 497bdef 1458a83 497bdef 1458a83 497bdef 1458a83 497bdef 1458a83 497bdef 1458a83 497bdef 1458a83 497bdef e1fe35c 61e1b8d e1fe35c 1458a83 e1fe35c 61e1b8d e1fe35c 61e1b8d e1fe35c 1458a83 e1fe35c 1458a83 61e1b8d 1458a83 61e1b8d e1fe35c 61e1b8d e1fe35c 61e1b8d e1fe35c 61e1b8d e1fe35c 497bdef e1fe35c 497bdef dbc3943 497bdef afdbdf1 e2fe43e afdbdf1 dbc3943 497bdef afdbdf1 497bdef 2368b12 497bdef 2368b12 497bdef ba7ecea afdbdf1 497bdef e1fe35c 497bdef 34afe78 633d99d 34afe78 633d99d 81564e3 afdbdf1 e2fe43e 633d99d afdbdf1 ba7ecea 81564e3 afdbdf1 81564e3 afdbdf1 2368b12 34afe78 633d99d 81564e3 afdbdf1 ba7ecea 34afe78 afdbdf1 ba7ecea 34afe78 633d99d 2368b12 633d99d afdbdf1 633d99d afdbdf1 34afe78 afdbdf1 ba7ecea afdbdf1 2368b12 afdbdf1 ba7ecea 34afe78 afdbdf1 ba7ecea 34afe78 afdbdf1 2368b12 497bdef e1fe35c 0089e11 61e1b8d 2368b12 e1fe35c 497bdef dab77fb a01dfca dab77fb 1458a83 497bdef afdbdf1 dab77fb afdbdf1 81564e3 afdbdf1 2368b12 afdbdf1 ba7ecea a01dfca afdbdf1 491f92c afdbdf1 491f92c afdbdf1 491f92c afdbdf1 491f92c afdbdf1 491f92c afdbdf1 2368b12 afdbdf1 491f92c afdbdf1 491f92c afdbdf1 a01dfca 491f92c 815f644 491f92c 9f95176 491f92c 9f95176 491f92c 34afe78 491f92c afdbdf1 491f92c afdbdf1 491f92c afdbdf1 491f92c dab77fb afdbdf1 2368b12 e2fe43e 81564e3 afdbdf1 e2fe43e ba7ecea afdbdf1 497bdef afdbdf1 ba7ecea 2368b12 ba7ecea afdbdf1 2368b12 afdbdf1 491f92c e2fe43e ba7ecea 491f92c ba7ecea 491f92c ba7ecea 491f92c ba7ecea 491f92c afdbdf1 497bdef e2fe43e f6ce266 afdbdf1 ba7ecea afdbdf1 f6ce266 afdbdf1 2368b12 815f644 afdbdf1 81564e3 ba7ecea 2368b12 ba7ecea 815f644 afdbdf1 a01dfca 81564e3 afdbdf1 2368b12 afdbdf1 81564e3 afdbdf1 81564e3 afdbdf1 81564e3 0089e11 1458a83 2bf1917 1458a83 2bf1917 1458a83 0089e11 6c0c716 0089e11 6c0c716 0089e11 6c0c716 0089e11 6c0c716 0089e11 afdbdf1 497bdef 2368b12 497bdef 2368b12 ba7ecea 2368b12 ba7ecea 2368b12 ba7ecea afdbdf1 ba7ecea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 |
from sqlalchemy.pool import NullPool
import os
import time
import json
import hashlib
import threading
import re
import subprocess
import shutil
import logging
import tempfile
import uuid
import asyncio
import base64
import io
import logging
logger = logging.getLogger("app")
from datetime import datetime, timezone
from collections import deque
from typing import Optional, Dict, Any, List
from fastapi import (
FastAPI, Request, Body, Query, Header, BackgroundTasks,
File, UploadFile, Form, HTTPException, status
)
from fastapi.responses import JSONResponse, StreamingResponse, HTMLResponse, FileResponse
from sqlalchemy import create_engine, text as sql_text
# Optional external helpers
import requests
# Optional ML libs
try:
import torch
except Exception:
torch = None
try:
from sentence_transformers import SentenceTransformer
except Exception:
SentenceTransformer = None
try:
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline as hf_pipeline
except Exception:
AutoTokenizer = None
AutoModelForSeq2SeqLM = None
hf_pipeline = None
# Optional TTS (Coqui)
try:
from TTS.api import TTS
TTS_AVAILABLE = True
except Exception:
TTS_AVAILABLE = False
# Optional language module
try:
import language as language_module # type: ignore
LANGUAGE_MODULE_AVAILABLE = True
except Exception:
language_module = None
LANGUAGE_MODULE_AVAILABLE = False
# Optional emojis helper
try:
from emojis import get_emoji, get_category_for_mood # type: ignore
EMOJIS_AVAILABLE = True
except Exception:
EMOJIS_AVAILABLE = False
def get_category_for_mood(m): return "neutral"
def get_emoji(cat, intensity=0.5): return "🤖"
# Import custom modules
try:
from voicecloner import synthesize_speech, is_available as tts_is_available, cache_speaker_sample
VOICECLONER_AVAILABLE = True
logger.info("voicecloner module loaded successfully")
except Exception as e:
VOICECLONER_AVAILABLE = False
logger.warning(f"voicecloner module not available: {e}")
try:
from coder import Coder
CODER_AVAILABLE = True
logger.info("coder module loaded successfully")
except Exception as e:
CODER_AVAILABLE = False
logger.warning(f"coder module not available: {e}")
import traceback
logger.error(f"Coder import traceback: {traceback.format_exc()}")
try:
from videogenerator import VideoGenerator
VIDEOGEN_AVAILABLE = True
except Exception:
VIDEOGEN_AVAILABLE = False
logger.warning("videogenerator module not available")
try:
from image_editor import ImageEditor
IMAGE_EDITOR_AVAILABLE = True
logger.info("image_editor module loaded successfully")
except Exception as e:
IMAGE_EDITOR_AVAILABLE = False
logger.warning(f"image_editor module not available: {e}")
# Optional langdetect
try:
from langdetect import detect as detect_lang
except Exception:
detect_lang = None
# Optional fuzzy matching for spell tolerance
try:
from difflib import SequenceMatcher
FUZZY_AVAILABLE = True
except Exception:
FUZZY_AVAILABLE = False
# Moderator pipeline (optional)
moderator = None
try:
if hf_pipeline is not None:
moderator = hf_pipeline("text-classification", model="unitary/toxic-bert", device=-1)
except Exception:
moderator = None
# Detect whether python-multipart is available (package name: multipart)
try:
import multipart # type: ignore
HAVE_MULTIPART = True
except Exception:
HAVE_MULTIPART = False
# Pillow for image editing
try:
from PIL import Image, ImageOps, ImageFilter, ImageDraw, ImageFont
PIL_AVAILABLE = True
except Exception:
PIL_AVAILABLE = False
# Config via environment
ADMIN_KEY = os.environ.get("ADMIN_KEY")
DATABASE_URL = os.environ.get("DATABASE_URL", "sqlite:///justice_user.db")
KNOWLEDGEDATABASE_URL = os.environ.get("KNOWLEDGEDATABASE_URL", DATABASE_URL)
EMBED_MODEL_NAME = os.environ.get("EMBED_MODEL_NAME", "paraphrase-multilingual-MiniLM-L12-v2")
TRANSLATION_CACHE_DIR = os.environ.get("TRANSLATION_CACHE_DIR", "./translation_models")
LLM_MODEL_PATH = os.environ.get("LLM_MODEL_PATH", "")
SAVE_MEMORY_CONFIDENCE = float(os.environ.get("SAVE_MEMORY_CONFIDENCE", "0.45"))
MAX_INPUT_SIZE = int(os.environ.get("MAX_INPUT_SIZE", "1000000"))
OLLAMA_MODEL = os.environ.get("OLLAMA_MODEL", "llama3")
OLLAMA_HTTP_URL = os.environ.get("OLLAMA_HTTP_URL", "http://localhost:11434")
OLLAMA_AUTO_PULL = os.environ.get("OLLAMA_AUTO_PULL", "0") in ("1", "true", "yes")
MODEL_TIMEOUT = float(os.environ.get("MODEL_TIMEOUT", "10"))
# TTS settings
TTS_MODEL_NAME = os.environ.get("TTS_MODEL_NAME", "tts_models/multilingual/multi-dataset/xtts_v2")
TTS_DEVICE = os.environ.get("TTS_DEVICE", "cuda" if (torch is not None and torch.cuda.is_available()) else "cpu")
TTS_USE_HALF = os.environ.get("TTS_USE_HALF", "1") in ("1", "true", "yes")
# Logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("justicebrain")
# heartbeat & start timestamp
last_heartbeat = {"time": datetime.utcnow().replace(tzinfo=timezone.utc).isoformat(), "ok": True}
app_start_time = time.time()
# DB engines
engine_user = create_engine(
DATABASE_URL,
poolclass=NullPool,
connect_args={"check_same_thread": False} if DATABASE_URL.startswith("sqlite") else {}
)
engine_knowledge = create_engine(
KNOWLEDGEDATABASE_URL,
poolclass=NullPool,
connect_args={"check_same_thread": False} if KNOWLEDGEDATABASE_URL.startswith("sqlite") else {}
)
app = FastAPI(title="Justice Brain — Backend")
# ✅ Serve generated videos from /tmp/video_sandbox
from fastapi.staticfiles import StaticFiles
video_dir = os.getenv("VIDEO_SANDBOX_DIR", "/tmp/video_sandbox")
# ✅ Create the folder if it doesn’t exist yet (prevents runtime error)
os.makedirs(video_dir, exist_ok=True)
# ✅ Mount the directory for frontend access
app.mount("/static/video_sandbox", StaticFiles(directory=video_dir), name="videos")
# Initialize custom modules
coder_instance = None
video_generator = None
image_editor = None
try:
if CODER_AVAILABLE:
coder_instance = Coder()
logger.info("Coder instance initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize Coder: {e}")
import traceback
logger.error(f"Coder init traceback: {traceback.format_exc()}")
CODER_AVAILABLE = False
try:
if VIDEOGEN_AVAILABLE:
video_generator = VideoGenerator()
logger.info("VideoGenerator instance initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize VideoGenerator: {e}")
VIDEOGEN_AVAILABLE = False
try:
if IMAGE_EDITOR_AVAILABLE:
image_editor = ImageEditor()
logger.info("ImageEditor instance initialized successfully")
except Exception as e:
logger.error(f"Failed to initialize ImageEditor: {e}")
IMAGE_EDITOR_AVAILABLE = False
# -------------------------
# Database schema creation
# -------------------------
def ensure_tables():
dialect_k = engine_knowledge.dialect.name
with engine_knowledge.begin() as conn:
if dialect_k == "sqlite":
conn.execute(sql_text("""
CREATE TABLE IF NOT EXISTS knowledge (
id INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT,
reply TEXT,
language TEXT DEFAULT 'und',
embedding BLOB,
category TEXT DEFAULT 'general',
topic TEXT DEFAULT 'general',
confidence FLOAT DEFAULT 0,
source TEXT,
meta TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""))
else:
conn.execute(sql_text("""
CREATE TABLE IF NOT EXISTS knowledge (
id SERIAL PRIMARY KEY,
text TEXT,
reply TEXT,
language TEXT DEFAULT 'und',
embedding BYTEA,
category TEXT DEFAULT 'general',
topic TEXT DEFAULT 'general',
confidence FLOAT DEFAULT 0,
source TEXT,
meta JSONB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""))
dialect_u = engine_user.dialect.name
with engine_user.begin() as conn:
if dialect_u == "sqlite":
conn.execute(sql_text("""
CREATE TABLE IF NOT EXISTS user_memory (
id INTEGER PRIMARY KEY AUTOINCREMENT,
user_id TEXT,
username TEXT,
ip TEXT,
text TEXT,
reply TEXT,
language TEXT DEFAULT 'und',
mood TEXT,
confidence FLOAT DEFAULT 0,
topic TEXT DEFAULT 'general',
source TEXT,
meta TEXT,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""))
else:
conn.execute(sql_text("""
CREATE TABLE IF NOT EXISTS user_memory (
id SERIAL PRIMARY KEY,
user_id TEXT,
username TEXT,
ip TEXT,
text TEXT,
reply TEXT,
language TEXT DEFAULT 'und',
mood TEXT,
confidence FLOAT DEFAULT 0,
topic TEXT DEFAULT 'general',
source TEXT,
meta JSONB,
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP,
updated_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
);
"""))
ensure_tables()
def ensure_column_exists(table: str, column: str, col_def_sql: str):
dialect = engine_user.dialect.name
try:
with engine_user.begin() as conn:
if dialect == "sqlite":
try:
rows = conn.execute(sql_text(f"PRAGMA table_info({table})")).fetchall()
existing = [r[1] for r in rows]
if column not in existing:
conn.execute(sql_text(f"ALTER TABLE {table} ADD COLUMN {col_def_sql}"))
except Exception:
pass
else:
try:
conn.execute(sql_text(f"ALTER TABLE {table} ADD COLUMN IF NOT EXISTS {col_def_sql}"))
except Exception:
pass
except Exception:
pass
ensure_column_exists("knowledge", "reply", "reply TEXT")
ensure_column_exists("user_memory", "reply", "reply TEXT")
# -------------------------
# Utility helpers
# -------------------------
def sanitize_knowledge_text(t: Any) -> str:
if not isinstance(t, str):
return str(t or "").strip()
s = t.strip()
try:
parsed = json.loads(s)
if isinstance(parsed, dict) and "text" in parsed:
return str(parsed["text"]).strip()
except Exception:
pass
if (s.startswith('"') and s.endswith('"')) or (s.startswith("'") and s.endswith("'")):
s = s[1:-1].strip()
return " ".join(s.split())
def dedupe_sentences(text: str) -> str:
if not text:
return text
sentences = []
seen = set()
for chunk in re.split(r'\n+', text):
parts = re.split(r'(?<=[.?!])\s+', chunk)
for sent in parts:
s = sent.strip()
if not s:
continue
if s in seen:
continue
seen.add(s)
sentences.append(s)
return "\n".join(sentences)
_EMOJI_PATTERN = re.compile(
"["
"\U0001F600-\U0001F64F"
"\U0001F300-\U0001F5FF"
"\U0001F680-\U0001F6FF"
"\U0001F1E0-\U0001F1FF"
"\u2600-\u26FF"
"\u2700-\u27BF"
"]+", flags=re.UNICODE
)
def extract_emojis(text: str) -> List[str]:
if not text:
return []
return _EMOJI_PATTERN.findall(text)
def emoji_sentiment_score(emojis: List[str]) -> float:
if not emojis:
return 0.0
score = 0.0
for e in "".join(emojis):
ord_val = ord(e)
if 0x1F600 <= ord_val <= 0x1F64F:
score += 0.5
elif 0x2600 <= ord_val <= 0x26FF:
score += 0.1
return max(-1.0, min(1.0, score / max(1, len(emojis))))
# -------------------------
# Language detection & translation
# -------------------------
_translation_model_cache: Dict[str, Any] = {}
def detect_language_safe(text: str) -> str:
text = (text or "").strip()
if not text:
return "en"
if LANGUAGE_MODULE_AVAILABLE:
try:
if hasattr(language_module, "detect"):
out = language_module.detect(text)
if out:
return out
if hasattr(language_module, "detect_language"):
out = language_module.detect_language(text)
if out:
return out
except Exception:
pass
lower = text.lower()
greetings = {"hola":"es","bonjour":"fr","hallo":"de","ciao":"it","こんにちは":"ja","你好":"zh","안녕하세요":"ko"}
for k, v in greetings.items():
if k in lower:
return v
if re.search(r'[\u4e00-\u9fff]', text):
return "zh"
if re.search(r'[\u3040-\u30ff]', text):
return "ja"
letters = re.findall(r'[A-Za-z]', text)
if len(letters) >= max(1, 0.6 * len(text)):
return "en"
if detect_lang is not None:
try:
out = detect_lang(text)
if out:
return out
except Exception:
pass
return "und"
def translate_text(text: str, src: str, tgt: str) -> str:
if not text:
return text
if LANGUAGE_MODULE_AVAILABLE:
try:
if hasattr(language_module, "translate"):
out = language_module.translate(text, src, tgt)
if out:
return out
if src in ("en", "eng") and hasattr(language_module, "translate_from_en"):
out = language_module.translate_from_en(text, tgt)
if out:
return out
if tgt in ("en", "eng") and hasattr(language_module, "translate_to_en"):
out = language_module.translate_to_en(text, src)
if out:
return out
except Exception:
pass
src_code = (src or "und").split("-")[0].lower()
tgt_code = (tgt or "und").split("-")[0].lower()
if not re.fullmatch(r"[a-z]{2,3}", src_code) or not re.fullmatch(r"[a-z]{2,3}", tgt_code):
return text
key = f"{src_code}-{tgt_code}"
try:
if key in _translation_model_cache:
tokenizer, model = _translation_model_cache[key]
inputs = tokenizer([text], return_tensors="pt", truncation=True)
outputs = model.generate(**inputs, max_length=1024)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
except Exception:
pass
try:
if AutoTokenizer is not None and AutoModelForSeq2SeqLM is not None:
model_name = f"Helsinki-NLP/opus-mt-{src_code}-{tgt_code}"
tokenizer = AutoTokenizer.from_pretrained(model_name, cache_dir=TRANSLATION_CACHE_DIR)
model = AutoModelForSeq2SeqLM.from_pretrained(model_name, cache_dir=TRANSLATION_CACHE_DIR)
_translation_model_cache[key] = (tokenizer, model)
inputs = tokenizer([text], return_tensors="pt", truncation=True)
outputs = model.generate(**inputs, max_length=1024)
return tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]
except Exception:
pass
return text
def translate_to_english(text: str, src_lang: str) -> str:
src = (src_lang or "und").split("-")[0].lower()
if src in ("en", "eng", "", "und"):
return text
return translate_text(text, src, "en")
def translate_from_english(text: str, tgt_lang: str) -> str:
tgt = (tgt_lang or "und").split("-")[0].lower()
if tgt in ("en", "eng", "", "und"):
return text
return translate_text(text, "en", tgt)
# -------------------------
# Embeddings helpers
# -------------------------
embed_model = None
def try_load_embed():
global embed_model
if SentenceTransformer is None:
logger.info("[JusticeAI] SentenceTransformer not available")
return
try:
embed_model = SentenceTransformer(EMBED_MODEL_NAME, device="cpu")
logger.info(f"[JusticeAI] Loaded embed model: {EMBED_MODEL_NAME}")
except Exception as e:
embed_model = None
logger.warning(f"[JusticeAI] failed to load embed model: {e}")
def embed_to_bytes(text: str) -> Optional[bytes]:
if embed_model is None:
return None
try:
emb = embed_model.encode([text], convert_to_tensor=True)[0]
return emb.cpu().numpy().tobytes()
except Exception:
return None
def bytes_to_tensor(b: bytes):
"""
Convert embedding bytes (as stored in DB) back to a torch tensor if possible.
Returns None if conversion not possible.
"""
if b is None:
return None
if torch is None:
return None
try:
import numpy as _np
arr = _np.frombuffer(b, dtype=_np.float32)
# If embed_model is available, try to infer dimension from it
if embed_model is not None:
# some sentence-transformers return float32 vectors
return torch.from_numpy(arr)
return torch.from_numpy(arr)
except Exception as e:
logger.debug(f"bytes_to_tensor conversion failed: {e}")
return None
# -------------------------
# Blocking with timeout helper (for non-TTS blocking ops)
# -------------------------
async def run_blocking_with_timeout(func, *args, timeout: float = MODEL_TIMEOUT):
loop = asyncio.get_running_loop()
fut = loop.run_in_executor(None, lambda: func(*args))
return await asyncio.wait_for(fut, timeout=timeout)
# -------------------------
# Ollama helpers
# -------------------------
def ollama_cli_available() -> bool:
return shutil.which("ollama") is not None
def ollama_http_available() -> bool:
try:
resp = requests.get(f"{OLLAMA_HTTP_URL}/health", timeout=1.0)
return resp.status_code == 200
except Exception:
return False
def call_ollama_http(prompt: str, model: str = OLLAMA_MODEL, timeout_s: int = MODEL_TIMEOUT) -> Optional[str]:
try:
url = f"{OLLAMA_HTTP_URL}/api/generate"
payload = {"model": model, "prompt": prompt, "max_tokens": 256}
headers = {"Content-Type": "application/json"}
r = requests.post(url, json=payload, headers=headers, timeout=min(timeout_s, MODEL_TIMEOUT))
if r.status_code == 200:
try:
obj = r.json()
for key in ("output", "text", "result", "generations"):
if key in obj:
return obj[key] if isinstance(obj[key], str) else json.dumps(obj[key])
return r.text
except Exception:
return r.text
else:
logger.debug(f"ollama HTTP status {r.status_code}")
return None
except Exception as e:
logger.debug(f"ollama HTTP call failed: {e}")
return None
def call_ollama_cli(prompt: str, model: str = OLLAMA_MODEL, timeout_s: int = MODEL_TIMEOUT) -> Optional[str]:
if not ollama_cli_available():
return None
try:
proc = subprocess.run(["ollama", "run", model, "--prompt", prompt], capture_output=True, text=True, timeout=min(timeout_s, MODEL_TIMEOUT))
if proc.returncode == 0:
return proc.stdout.strip() or proc.stderr.strip()
else:
logger.debug(f"ollama CLI rc={proc.returncode}")
return None
except Exception as e:
logger.debug(f"ollama CLI call exception: {e}")
return None
def infer_topic_with_ollama(msg: str, topics: List[str], model: str = OLLAMA_MODEL, timeout_s: int = MODEL_TIMEOUT) -> Optional[str]:
if not msg or not topics:
return None
topics_escaped = [t.replace('"','\\"') for t in topics]
topics_list = ", ".join(f'"{t}"' for t in topics_escaped)
escaped_msg = msg.replace('"', '\\"')
prompt = (
"You are a strict topic classifier. Given a user message, choose the single best topic from this list: "
f"[{topics_list}]. If none match, return topic \"none\". Return ONLY a JSON object with a single key \"topic\" and the chosen topic string.\n\n"
f"Message: \"{escaped_msg}\"\n\n"
"Respond with JSON only. Example: {\"topic\": \"security\"}"
)
out = call_ollama_http(prompt, model=model, timeout_s=timeout_s)
if out:
try:
j = json.loads(out)
if isinstance(j, dict) and "topic" in j:
t = j["topic"]
if t in topics:
return t
if t == "none":
return None
except Exception:
try:
idx = out.find("{")
if idx >= 0:
j = json.loads(out[idx:])
t = j.get("topic")
if t in topics:
return t
except Exception:
pass
out = call_ollama_cli(prompt, model=model, timeout_s=timeout_s)
if out:
try:
j = json.loads(out)
if isinstance(j, dict) and "topic" in j:
t = j["topic"]
if t in topics:
return t
if t == "none":
return None
except Exception:
try:
idx = out.find("{")
if idx >= 0:
j = json.loads(out[idx:])
t = j.get("topic")
if t in topics:
return t
except Exception:
pass
return None
# -------------------------
# Simple fallback topic inference (NEW)
# -------------------------
def fuzzy_match_score(s1: str, s2: str) -> float:
"""
Calculate fuzzy match score between two strings (0.0 to 1.0).
Handles spell errors and variations.
"""
if not FUZZY_AVAILABLE:
return 1.0 if s1.lower() == s2.lower() else 0.0
return SequenceMatcher(None, s1.lower(), s2.lower()).ratio()
def infer_topic_from_message(msg: str, topics: List[str]) -> Optional[str]:
"""
Fallback topic inference: tries keyword matching against topic names and
common words. Returns the first matching topic or None.
"""
if not msg or not topics:
return None
low = msg.lower()
# Try exact topic token matches first
for t in topics:
if not t:
continue
token = str(t).lower()
if token and token in low:
return t
# split topic into words and check
for w in re.split(r'[\s\-_]+', token):
if w and re.search(r'\b' + re.escape(w) + r'\b', low):
return t
# Try fuzzy matching for spell tolerance
if FUZZY_AVAILABLE:
best_match = None
best_score = 0.0
for t in topics:
if not t:
continue
token = str(t).lower()
# Check fuzzy match against whole message
score = fuzzy_match_score(token, low)
if score > 0.7 and score > best_score:
best_score = score
best_match = t
# Check fuzzy match against individual words
for word in low.split():
if len(word) > 3: # Only check meaningful words
score = fuzzy_match_score(token, word)
if score > 0.75 and score > best_score:
best_score = score
best_match = t
if best_match:
return best_match
# If no direct match, try heuristics: map some keywords to topics
heuristics = {
"security": ["security", "vulnerability", "exploit", "attack", "auth", "password", "login"],
"billing": ["bill", "invoice", "payment", "charge", "price", "cost"],
"installation": ["install", "setup", "deploy", "deployment", "configure"],
"general": ["help", "question", "how", "what", "why", "issue", "problem"]
}
for topic, kws in heuristics.items():
for kw in kws:
if kw in low:
# if topic exists in known topics return it, else skip
if topic in topics:
return topic
return None
def infer_topic_with_embeddings(msg: str, topics: List[str], knowledge_rows: List[dict]) -> Optional[str]:
"""
Use cosine similarity on embeddings to infer the best matching topic.
This provides semantic understanding instead of just keyword matching.
"""
if not embed_model or not topics or not knowledge_rows:
return None
try:
# Compute query embedding
q_emb = embed_model.encode([msg], convert_to_tensor=True, show_progress_bar=False)[0]
# Group knowledge by topic and compute average embedding per topic
topic_embeddings = {}
topic_counts = {}
for kr in knowledge_rows:
t = kr.get("topic", "general")
if t not in topics:
continue
emb_bytes = kr.get("embedding")
if emb_bytes is None:
continue
emb_tensor = bytes_to_tensor(emb_bytes)
if emb_tensor is None:
continue
if t not in topic_embeddings:
topic_embeddings[t] = emb_tensor
topic_counts[t] = 1
else:
topic_embeddings[t] = topic_embeddings[t] + emb_tensor
topic_counts[t] += 1
# Average the embeddings
for t in topic_embeddings:
topic_embeddings[t] = topic_embeddings[t] / topic_counts[t]
if not topic_embeddings:
return None
# Compute cosine similarity with each topic
best_topic = None
best_score = 0.0
for t, t_emb in topic_embeddings.items():
try:
score = float(torch.nn.functional.cosine_similarity(q_emb.unsqueeze(0), t_emb.unsqueeze(0), dim=1)[0])
if score > best_score:
best_score = score
best_topic = t
except Exception:
continue
# Only return if confidence is high enough
if best_score > 0.4:
logger.info(f"[topic inference] embedding-based: {best_topic} (score={best_score:.2f})")
return best_topic
except Exception as e:
logger.debug(f"[topic inference] embedding error: {e}")
return None
# -------------------------
# Boilerplate detection & reply helpers
# -------------------------
def is_boilerplate_candidate(s: str) -> bool:
s_low = (s or "").strip().lower()
generic = ["i don't know", "not sure", "maybe", "perhaps", "justiceai is a unified intelligence dashboard"]
if len(s_low) < 8:
return True
return any(g in s_low for g in generic)
def generate_creative_reply(candidates: List[str]) -> str:
all_sent = []
seen = set()
for c in candidates:
for s in re.split(r'(?<=[.?!])\s+', c):
st = s.strip()
if not st or st in seen or is_boilerplate_candidate(st):
continue
seen.add(st)
all_sent.append(st)
if not all_sent:
return "I don't have enough context yet — can you give more details?"
return "\n".join(all_sent[:5])
def detect_mood(text: str) -> str:
lower = (text or "").lower()
positive = ["great", "thanks", "awesome", "happy", "love", "excellent", "cool", "yes", "good"]
negative = ["sad", "bad", "problem", "angry", "hate", "fail", "no", "error", "issue"]
if any(w in lower for w in positive):
return "positive"
if any(w in lower for w in negative):
return "negative"
return "neutral"
def should_append_emoji(user_text: str, reply_text: str, mood: str, flags: Dict) -> str:
if flags.get("toxic"):
return ""
if EMOJIS_AVAILABLE:
try:
cat = get_category_for_mood(mood)
return get_emoji(cat, 0.6)
except Exception:
return ""
return ""
# -------------------------
# TTS: optimized loader and endpoints
# -------------------------
_tts_model = None
_tts_lock = threading.Lock()
_speaker_hash_cache: Dict[str, str] = {}
_tts_loaded_event = threading.Event()
def compute_file_sha256(path: str) -> str:
h = hashlib.sha256()
with open(path, "rb") as f:
while True:
b = f.read(8192)
if not b:
break
h.update(b)
return h.hexdigest()
def get_tts_model_blocking():
global _tts_model
if not TTS_AVAILABLE:
raise RuntimeError("TTS.api not available on server")
with _tts_lock:
if _tts_model is None:
model_name = os.environ.get("TTS_MODEL_NAME", TTS_MODEL_NAME)
device = os.environ.get("TTS_DEVICE", TTS_DEVICE)
logger.info(f"[TTS] Loading model {model_name} on device {device}")
_tts_model = TTS(model_name)
try:
if device and torch is not None:
if device.startswith("cuda") and torch.cuda.is_available():
try:
_tts_model.to(device)
except Exception:
pass
try:
torch.backends.cudnn.benchmark = True
except Exception:
pass
if TTS_USE_HALF:
try:
if hasattr(_tts_model, "model") and hasattr(_tts_model.model, "half"):
_tts_model.model.half()
except Exception:
pass
try:
torch.set_num_threads(int(os.environ.get("TORCH_NUM_THREADS", "4")))
except Exception:
pass
else:
try:
torch.set_num_threads(int(os.environ.get("TORCH_NUM_THREADS", "4")))
except Exception:
pass
except Exception as e:
logger.debug(f"[TTS] model device tuning warning: {e}")
logger.info("[TTS] model loaded")
_tts_loaded_event.set()
return _tts_model
def _save_upload_file_tmp(upload_file: UploadFile) -> str:
suffix = os.path.splitext(upload_file.filename)[1] or ".wav"
fd, tmp_path = tempfile.mkstemp(suffix=suffix, prefix="tts_speaker_")
os.close(fd)
with open(tmp_path, "wb") as f:
content = upload_file.file.read()
f.write(content)
return tmp_path
# Preload TTS in background (best-effort)
if TTS_AVAILABLE:
threading.Thread(target=lambda: (get_tts_model_blocking()), daemon=True).start()
# /speak_json and /speak endpoints
@app.post("/speak_json")
async def speak_json(background_tasks: BackgroundTasks, payload: dict = Body(...)):
text = payload.get("text", "")
if not text or not text.strip():
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Field 'text' is required")
voice_b64 = payload.get("voice_wav_b64")
language = payload.get("language")
speaker_path = None
if voice_b64:
try:
data = base64.b64decode(voice_b64)
fd, speaker_path = tempfile.mkstemp(suffix=".wav", prefix="tts_speaker_json_")
os.close(fd)
with open(speaker_path, "wb") as f:
f.write(data)
speaker_hash = compute_file_sha256(speaker_path)
cached = _speaker_hash_cache.get(speaker_hash)
if cached and os.path.exists(cached):
try:
os.remove(speaker_path)
except Exception:
pass
speaker_path = cached
else:
_speaker_hash_cache[speaker_hash] = speaker_path
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), speaker_path)
except Exception:
raise HTTPException(status_code=400, detail="Invalid base64 in 'voice_wav_b64'")
out_fd, out_path = tempfile.mkstemp(suffix=".wav", prefix="tts_out_json_")
os.close(out_fd)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), out_path)
try:
tts = get_tts_model_blocking()
except Exception:
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail="TTS model not available")
def synth():
kwargs = {}
if speaker_path:
kwargs["speaker_wav"] = speaker_path
if language:
kwargs["language"] = language
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
return out_path
loop = asyncio.get_running_loop()
try:
await loop.run_in_executor(None, synth)
except Exception:
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail="TTS synthesis failed")
return FileResponse(path=out_path, filename=f"speech-{uuid.uuid4().hex}.wav", media_type="audio/wav", background=background_tasks)
if HAVE_MULTIPART:
@app.post("/speak")
async def speak(
background_tasks: BackgroundTasks,
text: str = Form(...),
voice_wav: Optional[UploadFile] = File(None),
language: Optional[str] = Form(None),
):
if not text or not text.strip():
raise HTTPException(status_code=status.HTTP_400_BAD_REQUEST, detail="Field 'text' is required")
if not TTS_AVAILABLE:
raise HTTPException(status_code=status.HTTP_503_SERVICE_UNAVAILABLE, detail="TTS engine not available on server. Please install TTS library.")
speaker_path = None
if voice_wav is not None:
try:
speaker_path = _save_upload_file_tmp(voice_wav)
speaker_hash = compute_file_sha256(speaker_path)
cached = _speaker_hash_cache.get(speaker_hash)
if cached and os.path.exists(cached):
try:
os.remove(speaker_path)
except Exception:
pass
speaker_path = cached
else:
_speaker_hash_cache[speaker_hash] = speaker_path
except Exception as e:
logger.error(f"Voice sample processing failed: {e}")
raise HTTPException(status_code=500, detail=f"Failed to process uploaded voice sample: {str(e)}")
out_fd, out_path = tempfile.mkstemp(suffix=".wav", prefix="tts_out_")
os.close(out_fd)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), out_path)
try:
tts = get_tts_model_blocking()
except Exception as e:
logger.error(f"TTS model loading failed: {e}")
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=503, detail=f"TTS model not available: {str(e)}")
kwargs = {}
if speaker_path:
kwargs["speaker_wav"] = speaker_path
if language:
kwargs["language"] = language
try:
if torch is not None and torch.cuda.is_available() and TTS_USE_HALF:
try:
with torch.inference_mode():
with torch.cuda.amp.autocast():
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
except Exception as e:
logger.warning(f"GPU synthesis failed, trying CPU: {e}")
with torch.inference_mode():
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
else:
if torch is not None:
with torch.inference_mode():
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
else:
tts.tts_to_file(text=text, file_path=out_path, **kwargs)
except Exception as e:
logger.error(f"TTS synthesis failed: {e}")
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail=f"TTS synthesis failed: {str(e)}")
filename = f"speech-{uuid.uuid4().hex}.wav"
return FileResponse(path=out_path, filename=filename, media_type="audio/wav", background=background_tasks)
else:
@app.post("/speak")
async def speak_unavailable():
raise HTTPException(
status_code=501,
detail="Multipart support not available. Install python-multipart (pip install python-multipart) to enable /speak with file uploads. Use /speak_json with base64-encoded speaker sample instead."
)
# -------------------------
# Image Editor: endpoints using the new image_editor module
# -------------------------
@app.post("/image_edit_json")
async def image_edit_json(background_tasks: BackgroundTasks, payload: dict = Body(...)):
"""
JSON endpoint for advanced image editing with AI capabilities.
Body:
{
"image_b64": "<base64 encoded image bytes>" OR "image_url": "http://...",
"operations": [ {op definitions} ],
"prompt": "natural language edit request (e.g., 'add text: Hello', 'blur background')",
"format": "png" # optional
}
Returns: edited image file response.
"""
if not IMAGE_EDITOR_AVAILABLE or image_editor is None:
raise HTTPException(status_code=503, detail="Image editing requires Pillow. Install with pip install pillow")
image_b64 = payload.get("image_b64")
image_url = payload.get("image_url")
operations = payload.get("operations", [])
prompt = payload.get("prompt", "")
out_format = (payload.get("format") or "png").lower()
# Parse natural language prompt into operations using image_editor
if prompt and not operations:
operations = image_editor.parse_edit_prompt(prompt)
if not image_b64 and not image_url:
raise HTTPException(status_code=400, detail="Provide either image_b64 or image_url")
in_fd, in_path = tempfile.mkstemp(suffix=".input")
os.close(in_fd)
try:
if image_b64:
try:
data = base64.b64decode(image_b64)
except Exception:
raise HTTPException(status_code=400, detail="Invalid base64 for image_b64")
with open(in_path, "wb") as f:
f.write(data)
else:
try:
resp = requests.get(image_url, timeout=10)
if resp.status_code != 200:
raise HTTPException(status_code=400, detail="Failed to download image_url")
with open(in_path, "wb") as f:
f.write(resp.content)
except Exception:
raise HTTPException(status_code=400, detail="Failed to download image_url")
except HTTPException:
try:
if os.path.exists(in_path): os.remove(in_path)
except Exception:
pass
raise
except Exception:
try:
if os.path.exists(in_path): os.remove(in_path)
except Exception:
pass
raise HTTPException(status_code=500, detail="Failed to save input image")
ext = "." + out_format if not out_format.startswith(".") else out_format
out_fd, out_path = tempfile.mkstemp(suffix=ext, prefix="img_edit_out_")
os.close(out_fd)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), out_path)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), in_path)
try:
loop = asyncio.get_running_loop()
await loop.run_in_executor(None, lambda: image_editor.perform_operations(in_path, operations, out_path))
except Exception as e:
logger.exception("Image edit failed")
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail=f"Image edit failed: {e}")
return FileResponse(path=out_path, filename=f"image-{uuid.uuid4().hex}{ext}", media_type="image/png", background=background_tasks)
if HAVE_MULTIPART:
@app.post("/image_edit")
async def image_edit(
background_tasks: BackgroundTasks,
operations: str = Form(...), # JSON string describing ops
image: Optional[UploadFile] = File(None),
image_url: Optional[str] = Form(None),
format: Optional[str] = Form("png"),
):
if not IMAGE_EDITOR_AVAILABLE or image_editor is None:
raise HTTPException(status_code=503, detail="Image editing requires Pillow. Install with pip install pillow")
try:
ops = json.loads(operations) if operations else []
except Exception:
raise HTTPException(status_code=400, detail="Invalid JSON in operations")
if image is None and not image_url:
raise HTTPException(status_code=400, detail="Provide uploaded image file or image_url")
in_fd, in_path = tempfile.mkstemp(suffix=".input")
os.close(in_fd)
try:
if image is not None:
content = await image.read()
with open(in_path, "wb") as f:
f.write(content)
else:
try:
resp = requests.get(image_url, timeout=10)
if resp.status_code != 200:
raise HTTPException(status_code=400, detail="Failed to download image_url")
with open(in_path, "wb") as f:
f.write(resp.content)
except Exception:
raise HTTPException(status_code=400, detail="Failed to download image_url")
except HTTPException:
try:
if os.path.exists(in_path): os.remove(in_path)
except Exception:
pass
raise
except Exception:
try:
if os.path.exists(in_path): os.remove(in_path)
except Exception:
pass
raise HTTPException(status_code=500, detail="Failed to save uploaded image")
out_ext = "." + (format or "png").lstrip(".")
out_fd, out_path = tempfile.mkstemp(suffix=out_ext, prefix="img_edit_out_")
os.close(out_fd)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), out_path)
background_tasks.add_task(lambda p: os.path.exists(p) and os.remove(p), in_path)
try:
loop = asyncio.get_running_loop()
await loop.run_in_executor(None, lambda: image_editor.perform_operations(in_path, ops, out_path))
except Exception as e:
logger.exception("Image edit failed (multipart)")
try:
if os.path.exists(out_path): os.remove(out_path)
except Exception:
pass
raise HTTPException(status_code=500, detail=f"Image edit failed: {e}")
return FileResponse(path=out_path, filename=f"image-{uuid.uuid4().hex}{out_ext}", media_type="image/png", background=background_tasks)
else:
@app.post("/image_edit")
async def image_edit_unavailable():
raise HTTPException(
status_code=501,
detail="Multipart support not available. Install python-multipart (pip install python-multipart) to enable /image_edit with uploads. Use /image_edit_json instead."
)
# -------------------------
# Metrics, language.bin, and small helpers
# -------------------------
recent_request_times = deque()
recent_learning_timestamps = deque()
response_time_ema: Optional[float] = None
EMA_ALPHA = 0.2
def record_request(duration_s: float):
global response_time_ema
ts = time.time()
recent_request_times.append((ts, duration_s))
while recent_request_times and recent_request_times[0][0] < ts - 3600:
recent_request_times.popleft()
if response_time_ema is None:
response_time_ema = duration_s
else:
response_time_ema = EMA_ALPHA * duration_s + (1 - EMA_ALPHA) * response_time_ema
def record_learn_event():
ts = time.time()
recent_learning_timestamps.append(ts)
while recent_learning_timestamps and recent_learning_timestamps[0] < ts - 3600:
recent_learning_timestamps.popleft()
@app.get("/metrics")
async def metrics():
try:
with engine_knowledge.connect() as c:
k = c.execute(sql_text("SELECT COUNT(*) FROM knowledge")).scalar() or 0
except Exception:
k = -1
try:
with engine_user.connect() as c:
u = c.execute(sql_text("SELECT COUNT(*) FROM user_memory")).scalar() or 0
except Exception:
u = -1
reqs_last_hour = sum(1 for ts, _ in recent_request_times if ts >= time.time() - 3600) if 'recent_request_times' in globals() else 0
return {
"ok": True,
"uptime_s": round(time.time() - app_start_time, 2) if 'app_start_time' in globals() else None,
"knowledge_count": int(k),
"user_memory_count": int(u),
"requests_last_hour": int(reqs_last_hour)
}
@app.get("/language.bin")
async def language_bin():
path = "language.bin"
if os.path.exists(path):
return FileResponse(path, media_type="application/octet-stream")
return JSONResponse(status_code=404, content={"error": "language.bin not found", "hint": "Place file at ./language.bin or upload it"})
# -------------------------
# Startup warmups
# -------------------------
@app.on_event("startup")
async def startup_event():
logger.info("[JusticeAI] startup: warming optional components")
if SentenceTransformer is not None:
def warm_embed():
try:
try_load_embed()
except Exception as e:
logger.debug(f"[startup] embed warmup error: {e}")
threading.Thread(target=warm_embed, daemon=True).start()
if OLLAMA_AUTO_PULL and ollama_cli_available():
try:
subprocess.run(["ollama", "pull", OLLAMA_MODEL], timeout=300)
logger.info("[startup] attempted ollama pull")
except Exception as e:
logger.debug(f"[startup] ollama pull failed: {e}")
logger.info("[JusticeAI] startup complete")
# -------------------------
# Knowledge endpoints (add/add-bulk/leaderboard/reembed/model-status/health)
# -------------------------
def _require_admin(x_admin_key: Optional[str]):
if ADMIN_KEY is None:
raise HTTPException(status_code=403, detail="Server not configured for admin operations.")
if not x_admin_key or x_admin_key != ADMIN_KEY:
raise HTTPException(status_code=403, detail="Invalid admin key.")
@app.post("/add")
async def add_knowledge(data: dict = Body(...), x_admin_key: Optional[str] = Header(None, alias="X-Admin-Key")):
"""
Add a single knowledge entry.
Requires X-Admin-Key header matching ADMIN_KEY.
Body fields:
- text: required
- reply: optional
- topic: required
"""
# enforce admin
try:
_require_admin(x_admin_key)
except HTTPException:
# keep previous behavior of returning JSONResponse for auth failure
return JSONResponse(status_code=403, content={"error": "Invalid or missing admin key."})
if not isinstance(data, dict):
return JSONResponse(status_code=400, content={"error": "Invalid body"})
text_data = sanitize_knowledge_text(data.get("text", "") or "")
reply = sanitize_knowledge_text(data.get("reply", "") or "")
topic = str(data.get("topic", "") or "").strip()
if not topic:
return JSONResponse(status_code=400, content={"error": "Topic is required"})
if not text_data:
return JSONResponse(status_code=400, content={"error": "Text is required"})
detected = detect_language_safe(text_data) or "und"
if detected not in ("en", "eng", "und"):
try:
text_data = translate_to_english(text_data, detected)
detected = "en"
except Exception:
return JSONResponse(status_code=400, content={"error": "translation failed"})
emb_bytes = None
if embed_model is not None:
try:
emb_bytes = await run_blocking_with_timeout(lambda: embed_to_bytes(text_data), timeout=MODEL_TIMEOUT)
except Exception:
emb_bytes = None
# Use proper parameter binding. For SQLite, bytes are accepted.
try:
with engine_knowledge.begin() as conn:
if emb_bytes:
conn.execute(sql_text(
"INSERT INTO knowledge (text, reply, language, embedding, category, topic, confidence, meta, source) "
"VALUES (:t, :r, :lang, :e, 'manual', :topic, :conf, :meta, :source)"
), {"t": text_data, "r": reply, "lang": detected, "e": emb_bytes, "topic": topic, "conf": 0.9, "meta": json.dumps({"manual": True}), "source": "admin"})
else:
conn.execute(sql_text(
"INSERT INTO knowledge (text, reply, language, category, topic, confidence, meta, source) "
"VALUES (:t, :r, :lang, 'manual', :topic, :conf, :meta, :source)"
), {"t": text_data, "r": reply, "lang": detected, "topic": topic, "conf": 0.9, "meta": json.dumps({"manual": True}), "source": "admin"})
record_learn_event()
return {"status": "✅ Knowledge added", "text": text_data, "topic": topic, "language": detected}
except Exception as e:
logger.exception("add failed")
return JSONResponse(status_code=500, content={"error": "failed to store knowledge", "details": str(e)})
@app.post("/add-bulk")
async def add_bulk(data: List[dict] = Body(...), x_admin_key: Optional[str] = Header(None, alias="X-Admin-Key")):
"""
Add many knowledge entries. Requires admin key.
"""
try:
_require_admin(x_admin_key)
except HTTPException:
return JSONResponse(status_code=403, content={"error": "Invalid or missing admin key."})
if not isinstance(data, list):
return JSONResponse(status_code=400, content={"error": "Expected an array"})
added = 0
errors = []
for i, it in enumerate(data):
try:
if not isinstance(it, dict):
errors.append({"index": i, "error": "not object"}); continue
text_data = sanitize_knowledge_text(it.get("text", "") or "")
topic = str(it.get("topic", "") or "").strip()
reply = sanitize_knowledge_text(it.get("reply", "") or "")
if not text_data or not topic:
errors.append({"index": i, "error": "missing text or topic"}); continue
detected = detect_language_safe(text_data) or "und"
if detected not in ("en", "eng", "und"):
errors.append({"index": i, "error": "non-english; skip"}); continue
emb_bytes = None
if embed_model is not None:
try:
emb_bytes = await run_blocking_with_timeout(lambda: embed_to_bytes(text_data), timeout=MODEL_TIMEOUT)
except Exception:
emb_bytes = None
with engine_knowledge.begin() as conn:
if emb_bytes:
conn.execute(sql_text(
"INSERT INTO knowledge (text, reply, language, embedding, category, topic, source) VALUES (:t, :r, :lang, :e, 'manual', :topic, :source)"
), {"t": text_data, "r": reply, "lang": "en", "e": emb_bytes, "topic": topic, "source": "admin"})
else:
conn.execute(sql_text(
"INSERT INTO knowledge (text, reply, language, category, topic, source) VALUES (:t, :r, :lang, 'manual', :topic, :source)"
), {"t": text_data, "r": reply, "lang": "en", "topic": topic, "source": "admin"})
added += 1
except Exception as e:
logger.exception("add-bulk item error")
errors.append({"index": i, "error": str(e)})
if added:
record_learn_event()
return {"added": added, "errors": errors}
@app.get("/leaderboard")
async def leaderboard(topic: str = Query("general")):
t = str(topic or "general").strip() or "general"
try:
with engine_knowledge.begin() as conn:
rows = conn.execute(sql_text("""
SELECT id, text, reply, language, category, confidence, created_at
FROM knowledge
WHERE topic = :topic
ORDER BY confidence DESC, created_at DESC
LIMIT 20
"""), {"topic": t}).fetchall()
out = []
for r in rows:
text_en = r[1] or ""
lang = r[3] or "und"
display_text = text_en
if lang and lang not in ("en", "eng", "", "und"):
try:
display_text = translate_to_english(text_en, lang)
except Exception:
display_text = text_en
created_at = r[6]
out.append({
"id": r[0],
"text": display_text,
"reply": r[2],
"language": lang,
"category": r[4],
"confidence": round(r[5] or 0.0, 2),
"created_at": created_at.isoformat() if hasattr(created_at, "isoformat") else str(created_at)
})
return {"topic": t, "top_20": out}
except Exception as e:
logger.exception("leaderboard failed")
return JSONResponse(status_code=500, content={"error": "failed to fetch leaderboard", "details": str(e)})
@app.post("/reembed")
async def reembed_all(data: dict = Body(...), x_admin_key: str = Header(None, alias="X-Admin-Key")):
if ADMIN_KEY is None:
return JSONResponse(status_code=403, content={"error": "Server not configured for admin operations."})
if x_admin_key != ADMIN_KEY:
return JSONResponse(status_code=403, content={"error": "Invalid admin key."})
if embed_model is None:
return JSONResponse(status_code=503, content={"error": "Embedding model not ready."})
confirm = str(data.get("confirm", "") or "").strip()
if confirm != "REEMBED":
return JSONResponse(status_code=400, content={"error": "confirm token required."})
batch_size = int(data.get("batch_size", 100))
try:
with engine_knowledge.begin() as conn:
rows = conn.execute(sql_text("SELECT id, text FROM knowledge ORDER BY id")).fetchall()
ids_texts = [(r[0], r[1]) for r in rows]
total = len(ids_texts)
updated = 0
for i in range(0, total, batch_size):
batch = ids_texts[i:i+batch_size]
texts = [t for _, t in batch]
try:
embs = await run_blocking_with_timeout(lambda: embed_model.encode(texts, convert_to_tensor=True), timeout=MODEL_TIMEOUT)
except Exception:
embs = None
if embs is None:
continue
for j, (kid, _) in enumerate(batch):
emb_bytes = embs[j].cpu().numpy().tobytes()
with engine_knowledge.begin() as conn:
conn.execute(sql_text("UPDATE knowledge SET embedding = :e, updated_at = CURRENT_TIMESTAMP WHERE id = :id"), {"e": emb_bytes, "id": kid})
updated += 1
return {"status": "✅ Re-embed complete", "total_rows": total, "updated": updated}
except Exception as e:
logger.exception("reembed failed")
return JSONResponse(status_code=500, content={"error": "reembed failed", "details": str(e)})
@app.get("/model-status")
async def model_status():
return {
"embed_loaded": embed_model is not None,
"ollama_cli": ollama_cli_available(),
"ollama_http": ollama_http_available(),
"moderator": moderator is not None,
"language_module": LANGUAGE_MODULE_AVAILABLE,
"tts_available": TTS_AVAILABLE,
"multipart_available": HAVE_MULTIPART,
"pillow_available": PIL_AVAILABLE,
"voicecloner_available": VOICECLONER_AVAILABLE,
"coder_available": CODER_AVAILABLE,
"videogen_available": VIDEOGEN_AVAILABLE,
"image_editor_available": IMAGE_EDITOR_AVAILABLE
}
@app.get("/health")
async def health():
try:
with engine_knowledge.connect() as c:
k = c.execute(sql_text("SELECT COUNT(*) FROM knowledge")).scalar() or 0
except Exception:
k = -1
try:
with engine_user.connect() as c:
u = c.execute(sql_text("SELECT COUNT(*) FROM user_memory")).scalar() or 0
except Exception:
u = -1
return {"ok": True, "knowledge_count": int(k), "user_memory_count": int(u), "uptime_s": round(time.time() - app_start_time, 2), "heartbeat": last_heartbeat}
# -------------------------
# Chat endpoint (topic-scoped, user-memory isolated)
# -------------------------
@app.post("/chat")
async def chat(request: Request, data: dict = Body(...)):
t0 = time.time()
# Performance optimization: Use caching
cache_key = None
if isinstance(data, dict):
msg = str(data.get("message", "") or data.get("text", "") or "").strip()
if msg:
cache_key = hashlib.md5(msg.encode()).hexdigest()
# Accept both "message" and "text"
if isinstance(data, dict):
raw_msg = str(data.get("message", "") or data.get("text", "") or "").strip()
else:
raw_msg = str(data or "").strip()
if not raw_msg:
record_request(time.time() - t0)
return JSONResponse(status_code=400, content={"error": "Empty message"})
username = data.get("username", "anonymous") if isinstance(data, dict) else "anonymous"
user_ip = request.client.host if request.client else "0.0.0.0"
user_id = hashlib.sha256(f"{user_ip}-{username}".encode()).hexdigest()
topic_hint = str(data.get("topic", "") or "").strip() if isinstance(data, dict) else ""
include_steps = bool(data.get("include_steps", False) if isinstance(data, dict) else False)
detected_lang = detect_language_safe(raw_msg)
reply_lang = detected_lang if detected_lang and detected_lang != "und" else "en"
# Translate incoming to English for retrieval if needed
en_msg = raw_msg
if detected_lang not in ("en", "eng", "", "und"):
try:
en_msg = translate_to_english(raw_msg, detected_lang)
except Exception:
en_msg = raw_msg
# Load ALL knowledge entries first (needed for embedding-based topic inference)
try:
with engine_knowledge.begin() as conn:
all_rows = conn.execute(sql_text("SELECT id, text, reply, language, embedding, topic FROM knowledge ORDER BY created_at DESC")).fetchall()
except Exception as e:
record_request(time.time() - t0)
return JSONResponse(status_code=500, content={"error": "failed to read knowledge", "details": str(e)})
all_knowledge_rows = [{"id": r[0], "text": r[1] or "", "reply": r[2] or "", "lang": r[3] or "und", "embedding": r[4], "topic": r[5] or "general"} for r in all_rows]
# Get list of known topics
known_topics = list(set([kr.get("topic", "general") for kr in all_knowledge_rows if kr.get("topic")]))
# Determine topic: Embeddings first (best), then Ollama, then keyword matching
topic = "general"
try:
if not topic_hint:
chosen = None
# 1. Try embedding-based topic inference (BEST - semantic understanding)
if embed_model is not None and all_knowledge_rows:
try:
chosen = infer_topic_with_embeddings(en_msg, known_topics, all_knowledge_rows)
if chosen:
logger.info(f"[topic] Selected via embeddings: {chosen}")
except Exception as e:
logger.debug(f"[topic] embedding inference failed: {e}")
# 2. Fallback to Ollama if embeddings didn't work
if not chosen:
try:
if (ollama_http_available() or ollama_cli_available()) and known_topics:
possible = infer_topic_with_ollama(en_msg, known_topics)
if possible:
chosen = possible
logger.info(f"[topic] Selected via Ollama: {chosen}")
except Exception as e:
logger.debug(f"[topic] ollama inference failed: {e}")
# 3. Final fallback to keyword/fuzzy matching
if not chosen:
chosen = infer_topic_from_message(en_msg, known_topics)
if chosen:
logger.info(f"[topic] Selected via keyword/fuzzy: {chosen}")
topic = chosen or "general"
else:
topic = topic_hint or "general"
except Exception as e:
logger.warning(f"[topic] inference error: {e}")
topic = topic_hint or "general"
logger.info(f"[chat] Final topic: {topic}")
# Moderation
flags = {}
try:
if moderator is not None:
mod_res = moderator(raw_msg[:1024])
if isinstance(mod_res, list) and mod_res:
lbl = mod_res[0].get('label', '').lower()
sc = float(mod_res[0].get('score', 0.0))
if 'toxic' in lbl or sc > 0.85:
flags['toxic'] = True
except Exception:
pass
# Filter knowledge entries for this topic only
knowledge_rows = [kr for kr in all_knowledge_rows if kr.get("topic") == topic]
# Retrieval using cosine similarity with spell tolerance
matches: List[str] = []
confidence = 0.0
match_lang = "en"
try:
# If we have an embed model, use semantic similarity (BEST approach)
if embed_model is not None and knowledge_rows:
stored_embs = []
stored_indices = []
# Collect stored embeddings
for i, kr in enumerate(knowledge_rows):
if kr.get("embedding") is not None:
t = bytes_to_tensor(kr["embedding"])
if t is not None:
stored_embs.append(t)
stored_indices.append(i)
# Use stored embeddings if available
if torch is not None and stored_embs:
try:
# Stack stored embeddings
embs_tensor = torch.stack(stored_embs)
# Compute query embedding
q_emb = await run_blocking_with_timeout(
lambda: embed_model.encode([en_msg], convert_to_tensor=True, show_progress_bar=False)[0],
timeout=MODEL_TIMEOUT
)
if not isinstance(q_emb, torch.Tensor):
q_emb = torch.from_numpy(q_emb.cpu().numpy())
# Compute cosine similarity
try:
scores = torch.nn.functional.cosine_similarity(q_emb.unsqueeze(0), embs_tensor, dim=1)
except Exception:
scores = torch.nn.functional.cosine_similarity(embs_tensor, q_emb.unsqueeze(0), dim=1)
# Collect candidates with scores
cand = []
for idx, s in enumerate(scores):
i_orig = stored_indices[idx]
kr = knowledge_rows[i_orig]
candidate_text = (kr["reply"] or kr["text"]).strip()
if is_boilerplate_candidate(candidate_text):
continue
s_float = float(s)
# Lower threshold for better recall
if s_float >= 0.25:
cand.append({
"text": candidate_text,
"lang": kr["lang"],
"score": s_float
})
# Sort by score
cand = sorted(cand, key=lambda x: -x["score"])
matches = [c["text"] for c in cand[:5]] # Top 5 matches
confidence = float(cand[0]["score"]) if cand else 0.0
match_lang = cand[0]["lang"] if cand else "en"
logger.info(f"[retrieval] Found {len(matches)} matches via embeddings, best score: {confidence:.2f}")
except asyncio.TimeoutError:
logger.warning("[retrieval] embedding encode timed out")
except Exception as e:
logger.warning(f"[retrieval] embedding error: {e}")
# Fallback: compute embeddings on the fly if no stored embeddings
if not matches and knowledge_rows:
try:
texts = [kr["text"] for kr in knowledge_rows]
embs = await run_blocking_with_timeout(
lambda: embed_model.encode(texts, convert_to_tensor=True, show_progress_bar=False),
timeout=MODEL_TIMEOUT
)
q_emb = await run_blocking_with_timeout(
lambda: embed_model.encode([en_msg], convert_to_tensor=True, show_progress_bar=False)[0],
timeout=MODEL_TIMEOUT
)
try:
scores = torch.nn.functional.cosine_similarity(q_emb.unsqueeze(0), embs, dim=1)
except Exception:
scores = torch.nn.functional.cosine_similarity(embs, q_emb.unsqueeze(0), dim=1)
cand = []
for i in range(scores.shape[0]):
s = float(scores[i])
kr = knowledge_rows[i]
candidate_text = (kr["reply"] or kr["text"]).strip()
if is_boilerplate_candidate(candidate_text):
continue
if s >= 0.25:
cand.append({
"text": candidate_text,
"lang": kr["lang"],
"score": s
})
cand = sorted(cand, key=lambda x: -x["score"])
matches = [c["text"] for c in cand[:5]]
confidence = float(cand[0]["score"]) if cand else 0.0
match_lang = cand[0]["lang"] if cand else "en"
logger.info(f"[retrieval] Found {len(matches)} matches via on-the-fly embeddings, best score: {confidence:.2f}")
except asyncio.TimeoutError:
logger.warning("[retrieval] embedding encode timed out")
except Exception as e:
logger.warning(f"[retrieval] embedding error: {e}")
# Final fallback: fuzzy keyword matching with spell tolerance
if not matches and knowledge_rows:
logger.info("[retrieval] Using fuzzy keyword matching fallback")
cand = []
for kr in knowledge_rows:
txt = (kr["reply"] or kr["text"]) or ""
txt_lower = txt.lower()
msg_lower = en_msg.lower()
# Exact substring match
if msg_lower in txt_lower:
if not is_boilerplate_candidate(txt):
cand.append({"text": txt, "lang": kr["lang"], "score": 0.8})
continue
# Fuzzy matching for spell tolerance
if FUZZY_AVAILABLE and len(en_msg) > 3:
# Check fuzzy match against text
fuzzy_score = fuzzy_match_score(en_msg, txt)
if fuzzy_score > 0.6:
if not is_boilerplate_candidate(txt):
cand.append({"text": txt, "lang": kr["lang"], "score": fuzzy_score * 0.7})
continue
# Check fuzzy match against individual words
msg_words = [w for w in msg_lower.split() if len(w) > 3]
txt_words = [w for w in txt_lower.split() if len(w) > 3]
for msg_word in msg_words:
for txt_word in txt_words:
word_score = fuzzy_match_score(msg_word, txt_word)
if word_score > 0.75:
if not is_boilerplate_candidate(txt):
cand.append({"text": txt, "lang": kr["lang"], "score": word_score * 0.5})
break
# Remove duplicates and sort
seen = set()
unique_cand = []
for c in cand:
if c["text"] not in seen:
seen.add(c["text"])
unique_cand.append(c)
cand = sorted(unique_cand, key=lambda x: -x["score"])
matches = [c["text"] for c in cand[:5]]
confidence = float(cand[0]["score"]) if cand else 0.0
match_lang = cand[0]["lang"] if cand else "en"
logger.info(f"[retrieval] Found {len(matches)} matches via fuzzy matching, best score: {confidence:.2f}")
except Exception as e:
logger.warning(f"[retrieval] error: {e}")
matches = []
# Compose reply strictly from topic matches
if matches and confidence >= 0.6:
reply_en = matches[0]
elif matches:
reply_en = generate_creative_reply(matches[:5])
else:
base = "This is outside the project, I can only help with problems related to the project."
if reply_lang and reply_lang not in ("en", "eng", "und"):
try:
base = translate_from_english(base, reply_lang)
except Exception:
pass
reply_final = base
# Persist user memory (even on low confidence), skipping toxic content
try:
if not flags.get('toxic', False):
with engine_user.begin() as conn:
conn.execute(sql_text(
"INSERT INTO user_memory (user_id, username, ip, text, reply, language, mood, confidence, topic, source) "
"VALUES (:uid, :uname, :ip, :text, :reply, :lang, :mood, :conf, :topic, :source)"
), {"uid": user_id, "uname": username, "ip": user_ip, "text": raw_msg, "reply": reply_final, "lang": detected_lang,
"mood": detect_mood(raw_msg + " " + reply_final), "conf": float(confidence), "topic": topic, "source": "chat"})
conn.execute(sql_text(
"DELETE FROM user_memory WHERE id NOT IN (SELECT id FROM user_memory WHERE user_id = :uid ORDER BY created_at DESC LIMIT 10) AND user_id = :uid"
), {"uid": user_id})
except Exception as e:
logger.debug(f"user_memory store error: {e}")
record_request(time.time() - t0)
return {"reply": reply_final, "topic": topic, "language": reply_lang, "emoji": "", "confidence": round(confidence,2), "flags": flags}
# Post-process and translate back to user's language
reply_en = dedupe_sentences(reply_en)
reply_final = reply_en
# Determine target language for translation
target_lang = reply_lang if reply_lang and reply_lang not in ("en", "eng", "und", "") else None
# If match was in a different language, try to use that
if match_lang and match_lang not in ("en", "eng", "und", ""):
# If user's language matches the match language, use it
if target_lang and target_lang.split("-")[0].lower() == match_lang.split("-")[0].lower():
target_lang = match_lang
# Translate to user's language
if target_lang:
lang_code = target_lang.split("-")[0].lower()
try:
logger.info(f"[translation] Translating reply from en to {lang_code}")
reply_final = translate_from_english(reply_en, lang_code)
reply_final = dedupe_sentences(reply_final)
logger.info(f"[translation] Translation successful")
except Exception as exc:
logger.warning(f"[translation] failed to translate reply_en -> {lang_code}: {exc}")
reply_final = reply_en
else:
logger.info("[translation] No translation needed, using English")
# Mood & emoji append
emoji = ""
try:
mood = detect_mood(raw_msg + " " + reply_final)
if EMOJIS_AVAILABLE:
try:
cand = get_emoji(get_category_for_mood(mood), 0.6)
if cand and cand not in reply_final and len(reply_final) + len(cand) < 1200:
reply_final = f"{reply_final} {cand}"
emoji = cand
except Exception:
emoji = ""
except Exception:
emoji = ""
# Persist user memory (only in user DB) and prune to last 10
try:
if not flags.get('toxic', False):
with engine_user.begin() as conn:
conn.execute(sql_text(
"INSERT INTO user_memory (user_id, username, ip, text, reply, language, mood, confidence, topic, source) "
"VALUES (:uid, :uname, :ip, :text, :reply, :lang, :mood, :conf, :topic, :source)"
), {"uid": user_id, "uname": username, "ip": user_ip, "text": raw_msg, "reply": reply_final, "lang": detected_lang,
"mood": detect_mood(raw_msg + " " + reply_final), "conf": float(confidence), "topic": topic, "source": "chat"})
conn.execute(sql_text(
"DELETE FROM user_memory WHERE id NOT IN (SELECT id FROM user_memory WHERE user_id = :uid ORDER BY created_at DESC LIMIT 10) AND user_id = :uid"
), {"uid": user_id})
except Exception as e:
logger.debug(f"user_memory persist error: {e}")
duration = time.time() - t0
record_request(duration)
if include_steps:
reply_final = f"{reply_final}\n\n[Debug: topic={topic} confidence={round(confidence,2)}]"
return {"reply": reply_final, "topic": topic, "language": reply_lang, "emoji": emoji, "confidence": round(confidence,2), "flags": flags}
@app.post("/response")
async def response_wrapper(request: Request, data: dict = Body(...)):
return await chat(request, data)
@app.post("/verify-admin")
async def verify_admin(x_admin_key: str = Header(None, alias="X-Admin-Key")):
if ADMIN_KEY is None:
return JSONResponse(status_code=403, content={"error": "Server not configured for admin operations."})
if not x_admin_key or x_admin_key != ADMIN_KEY:
return JSONResponse(status_code=403, content={"valid": False, "error": "Invalid or missing admin key."})
return {"valid": True}
@app.post("/cleardatabase")
async def clear_database(data: dict = Body(...), x_admin_key: str = Header(None, alias="X-Admin-Key")):
if ADMIN_KEY is None:
return JSONResponse(status_code=403, content={"error": "Server not configured for admin operations."})
if x_admin_key != ADMIN_KEY:
return JSONResponse(status_code=403, content={"error": "Invalid admin key."})
confirm = str(data.get("confirm", "") or "").strip()
if confirm != "CLEAR_DATABASE":
return JSONResponse(status_code=400, content={"error": "confirm token required."})
try:
with engine_knowledge.begin() as conn:
k_count = conn.execute(sql_text("SELECT COUNT(*) FROM knowledge")).scalar() or 0
conn.execute(sql_text("DELETE FROM knowledge"))
with engine_user.begin() as conn:
u_count = conn.execute(sql_text("SELECT COUNT(*) FROM user_memory")).scalar() or 0
conn.execute(sql_text("DELETE FROM user_memory"))
return {"status": "✅ Cleared database", "deleted_knowledge": int(k_count), "deleted_user_memory": int(u_count)}
except Exception as e:
logger.exception("clear failed")
return JSONResponse(status_code=500, content={"error": "failed to clear database", "details": str(e)})
# -------------------------
# Coder endpoints
# -------------------------
@app.post("/coder/run")
async def coder_run_code(data: dict = Body(...)):
"""Execute code in sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
code = data.get("code", "")
lang = data.get("language", "python")
timeout = int(data.get("timeout", 15))
if not code:
raise HTTPException(status_code=400, detail="Code is required")
try:
result = coder_instance.run_code(code, lang, timeout)
return result
except Exception as e:
logger.exception("Coder run failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/debug")
async def coder_debug_code(data: dict = Body(...)):
"""Debug code in sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
code = data.get("code", "")
lang = data.get("language", "python")
if not code:
raise HTTPException(status_code=400, detail="Code is required")
try:
result = coder_instance.debug_code(code, lang)
return result
except Exception as e:
logger.exception("Coder debug failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/fix")
async def coder_fix_code(data: dict = Body(...)):
"""Automatically fix code issues"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
code = data.get("code", "")
lang = data.get("language", "python")
if not code:
raise HTTPException(status_code=400, detail="Code is required")
try:
result = coder_instance.fix_code(code, lang)
return result
except Exception as e:
logger.exception("Coder fix failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/generate")
async def generate_code(data: dict = Body(...)):
"""Generate code from natural language request"""
if not CODER_AVAILABLE:
raise HTTPException(
status_code=503,
detail="Coder module not available. Please check server logs and ensure all dependencies are installed."
)
if coder_instance is None:
raise HTTPException(
status_code=503,
detail="Coder instance not initialized. Please restart the server."
)
request = data.get("request", "")
lang = data.get("language", "python")
if not request:
raise HTTPException(status_code=400, detail="Request is required")
try:
result = coder_instance.generate_code(request, lang)
return result
except AttributeError as e:
logger.exception("Code generation failed - method not found")
return JSONResponse(
status_code=500,
content={"error": f"Code generation method not available: {str(e)}"}
)
except Exception as e:
logger.exception("Code generation failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/preview/start")
async def coder_start_preview(data: dict = Body(...)):
"""Start preview server"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
lang = data.get("language", "html")
port = int(data.get("port", 8000))
html_content = data.get("html") # optional HTML body
try:
result = coder_instance.start_preview(lang=lang, port=port, html_content=html_content)
return result
except Exception as e:
logger.exception("Preview start failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/preview/stop")
async def coder_stop_preview():
"""Stop preview server"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
try:
result = coder_instance.stop_preview()
return result
except Exception as e:
logger.exception("Preview stop failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/coder/preview/info")
async def coder_preview_info():
"""Get preview server info"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
try:
result = coder_instance.get_preview_info()
return result
except Exception as e:
logger.exception("Preview info failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/file/write")
async def coder_write_file(data: dict = Body(...)):
"""Write file to sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
filename = data.get("filename", "")
content = data.get("content", "")
if not filename:
raise HTTPException(status_code=400, detail="Filename is required")
try:
result = coder_instance.write_file(filename, content)
return result
except Exception as e:
logger.exception("File write failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.post("/coder/file/read")
async def coder_read_file(data: dict = Body(...)):
"""Read file from sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
filename = data.get("filename", "")
if not filename:
raise HTTPException(status_code=400, detail="Filename is required")
try:
result = coder_instance.read_file(filename)
return result
except Exception as e:
logger.exception("File read failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/coder/files")
async def coder_list_files():
"""List files in sandbox"""
if not CODER_AVAILABLE or coder_instance is None:
raise HTTPException(status_code=503, detail="Coder module not available")
try:
result = coder_instance.list_files()
return result
except Exception as e:
logger.exception("File list failed")
return JSONResponse(status_code=500, content={"error": str(e)})
# -------------------------
# Video Generator endpoints
# -------------------------
@app.post("/video/generate")
async def video_generate(background_tasks: BackgroundTasks, data: dict = Body(...)):
"""Generate video from prompt"""
if not VIDEOGEN_AVAILABLE or video_generator is None:
raise HTTPException(status_code=503, detail="Video generator not available")
prompt = data.get("prompt", "")
num_frames = int(data.get("num_frames", 16))
fps = int(data.get("fps", 8))
enhance = bool(data.get("enhance", False))
if not prompt:
raise HTTPException(status_code=400, detail="Prompt is required")
try:
loop = asyncio.get_running_loop()
result = await loop.run_in_executor(
None,
lambda: video_generator.generate(
prompt=prompt,
num_frames=num_frames,
fps=fps,
enhance=enhance
)
)
return result
except Exception as e:
logger.exception("Video generation failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/video/history")
async def video_history(limit: int = Query(20)):
"""Get video generation history"""
if not VIDEOGEN_AVAILABLE or video_generator is None:
raise HTTPException(status_code=503, detail="Video generator not available")
try:
history = video_generator.get_history(limit)
return {"history": history}
except Exception as e:
logger.exception("Video history failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/video/status")
async def video_status():
"""Get video generator status"""
if not VIDEOGEN_AVAILABLE or video_generator is None:
raise HTTPException(status_code=503, detail="Video generator not available")
try:
status = video_generator.get_status()
return status
except Exception as e:
logger.exception("Video status failed")
return JSONResponse(status_code=500, content={"error": str(e)})
@app.get("/", response_class=HTMLResponse)
async def frontend_dashboard():
try:
health = requests.get("http://localhost:7860/health", timeout=1).json()
except Exception:
health = {"status": "starting", "db_status": "unknown", "stars": 0, "db_metrics": {}}
db_metrics = health.get("db_metrics") or {}
knowledge_count = db_metrics.get("knowledge_count", "?")
user_memory_count = db_metrics.get("user_memory_count", "?")
stars = health.get("stars", 0)
hb = last_heartbeat
try:
hb_display = f'{hb.get("time")} (ok={hb.get("ok")})' if isinstance(hb, dict) else str(hb)
except Exception:
hb_display = str(hb)
startup_time_local = round(time.time() - app_start_time, 2)
try:
with open("frontend.html", "r") as f:
html = f.read()
except Exception:
html = "<h1>Frontend file not found</h1>"
html = html.replace("%%HEALTH_STATUS%%", str(health.get("status", "starting")))
html = html.replace("%%KNOWLEDGE_COUNT%%", str(knowledge_count))
html = html.replace("%%USER_MEMORY_COUNT%%", str(user_memory_count))
html = html.replace("%%STARS%%", "⭐" * int(stars) if isinstance(stars, int) else str(stars))
html = html.replace("%%HB_DISPLAY%%", hb_display)
html = html.replace("%%FOOTER_TIME%%", datetime.utcnow().isoformat())
html = html.replace("%%STARTUP_TIME%%", str(startup_time_local))
return HTMLResponse(html)
# -------------------------
# Run server
# -------------------------
if __name__ == "__main__":
# Preload TTS and embeddings in background to reduce first-request latency
if TTS_AVAILABLE:
try:
threading.Thread(target=lambda: get_tts_model_blocking(), daemon=True).start()
except Exception:
pass
if SentenceTransformer is not None:
try:
threading.Thread(target=try_load_embed, daemon=True).start()
except Exception:
pass
app_start_time = time.time()
import uvicorn
port = int(os.environ.get("PORT", 7860))
uvicorn.run("app:app", host="0.0.0.0", port=port, log_level="info") |