Spaces:
Runtime error
Runtime error
Upload model.py
Browse files
model.py
CHANGED
|
@@ -9,38 +9,9 @@ from accelerate import Accelerator
|
|
| 9 |
|
| 10 |
class DynamicModel(nn.Module):
|
| 11 |
def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
|
| 12 |
-
"""
|
| 13 |
-
Initialize the DynamicModel with configurable neural network sections.
|
| 14 |
-
|
| 15 |
-
Args:
|
| 16 |
-
sections (Dict[str, List[Dict[str, Any]]]): Dictionary mapping section names to lists of layer configurations.
|
| 17 |
-
Each layer configuration is a dictionary containing:
|
| 18 |
-
- input_size (int): Size of input features
|
| 19 |
-
- output_size (int): Size of output features
|
| 20 |
-
- activation (str, optional): Activation function name ('relu', 'tanh', 'sigmoid', etc.)
|
| 21 |
-
- dropout (float, optional): Dropout rate
|
| 22 |
-
- batch_norm (bool, optional): Whether to use batch normalization
|
| 23 |
-
- hidden_layers (List[Dict[str, Any]], optional): List of hidden layer configurations
|
| 24 |
-
- memory_augmentation (bool, optional): Whether to add a memory augmentation layer
|
| 25 |
-
- hybrid_attention (bool, optional): Whether to add a hybrid attention layer
|
| 26 |
-
- dynamic_flash_attention (bool, optional): Whether to add a dynamic flash attention layer
|
| 27 |
-
|
| 28 |
-
Example:
|
| 29 |
-
sections = {
|
| 30 |
-
'encoder': [
|
| 31 |
-
{'input_size': 128, 'output_size': 256, 'activation': 'relu', 'batch_norm': True},
|
| 32 |
-
{'input_size': 256, 'output_size': 512, 'activation': 'leaky_relu', 'dropout': 0.1}
|
| 33 |
-
],
|
| 34 |
-
'decoder': [
|
| 35 |
-
{'input_size': 512, 'output_size': 256, 'activation': 'elu'},
|
| 36 |
-
{'input_size': 256, 'output_size': 128, 'activation': 'tanh'}
|
| 37 |
-
]
|
| 38 |
-
}
|
| 39 |
-
"""
|
| 40 |
super(DynamicModel, self).__init__()
|
| 41 |
self.sections = nn.ModuleDict()
|
| 42 |
|
| 43 |
-
# Default section configuration if none provided
|
| 44 |
if not sections:
|
| 45 |
sections = {
|
| 46 |
'default': [{
|
|
@@ -52,47 +23,19 @@ class DynamicModel(nn.Module):
|
|
| 52 |
}]
|
| 53 |
}
|
| 54 |
|
| 55 |
-
# Initialize each section with its layer configurations
|
| 56 |
for section_name, layers in sections.items():
|
| 57 |
self.sections[section_name] = nn.ModuleList()
|
| 58 |
for layer_params in layers:
|
|
|
|
| 59 |
self.sections[section_name].append(self.create_layer(layer_params))
|
| 60 |
|
| 61 |
def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
|
| 62 |
-
"""
|
| 63 |
-
Creates a neural network layer based on provided parameters.
|
| 64 |
-
|
| 65 |
-
Args:
|
| 66 |
-
layer_params (Dict[str, Any]): Dictionary containing layer configuration
|
| 67 |
-
Required keys:
|
| 68 |
-
- input_size (int): Size of input features
|
| 69 |
-
- output_size (int): Size of output features
|
| 70 |
-
Optional keys:
|
| 71 |
-
- activation (str): Activation function name ('relu', 'tanh', 'sigmoid', None)
|
| 72 |
-
- dropout (float): Dropout rate if needed
|
| 73 |
-
- batch_norm (bool): Whether to use batch normalization
|
| 74 |
-
- hidden_layers (List[Dict[str, Any]]): List of hidden layer configurations
|
| 75 |
-
- memory_augmentation (bool): Whether to add a memory augmentation layer
|
| 76 |
-
- hybrid_attention (bool): Whether to add a hybrid attention layer
|
| 77 |
-
- dynamic_flash_attention (bool): Whether to add a dynamic flash attention layer
|
| 78 |
-
|
| 79 |
-
Returns:
|
| 80 |
-
nn.Module: Configured neural network layer with activation
|
| 81 |
-
|
| 82 |
-
Raises:
|
| 83 |
-
KeyError: If required parameters are missing
|
| 84 |
-
ValueError: If activation function is not supported
|
| 85 |
-
"""
|
| 86 |
layers = []
|
| 87 |
-
|
| 88 |
-
# Add linear layer
|
| 89 |
layers.append(nn.Linear(layer_params['input_size'], layer_params['output_size']))
|
| 90 |
|
| 91 |
-
# Add batch normalization if specified
|
| 92 |
if layer_params.get('batch_norm', False):
|
| 93 |
layers.append(nn.BatchNorm1d(layer_params['output_size']))
|
| 94 |
|
| 95 |
-
# Add activation function
|
| 96 |
activation = layer_params.get('activation', 'relu')
|
| 97 |
if activation == 'relu':
|
| 98 |
layers.append(nn.ReLU(inplace=True))
|
|
@@ -107,43 +50,25 @@ class DynamicModel(nn.Module):
|
|
| 107 |
elif activation is not None:
|
| 108 |
raise ValueError(f"Unsupported activation function: {activation}")
|
| 109 |
|
| 110 |
-
# Add dropout if specified
|
| 111 |
if dropout_rate := layer_params.get('dropout', 0.0):
|
| 112 |
layers.append(nn.Dropout(p=dropout_rate))
|
| 113 |
|
| 114 |
-
# Add hidden layers if specified
|
| 115 |
if hidden_layers := layer_params.get('hidden_layers', []):
|
| 116 |
for hidden_layer_params in hidden_layers:
|
| 117 |
layers.append(self.create_layer(hidden_layer_params))
|
| 118 |
|
| 119 |
-
# Add memory augmentation layer if specified
|
| 120 |
if layer_params.get('memory_augmentation', False):
|
| 121 |
layers.append(MemoryAugmentationLayer(layer_params['output_size']))
|
| 122 |
|
| 123 |
-
# Add hybrid attention layer if specified
|
| 124 |
if layer_params.get('hybrid_attention', False):
|
| 125 |
layers.append(HybridAttentionLayer(layer_params['output_size']))
|
| 126 |
|
| 127 |
-
# Add dynamic flash attention layer if specified
|
| 128 |
if layer_params.get('dynamic_flash_attention', False):
|
| 129 |
layers.append(DynamicFlashAttentionLayer(layer_params['output_size']))
|
| 130 |
|
| 131 |
return nn.Sequential(*layers)
|
| 132 |
|
| 133 |
def forward(self, x: torch.Tensor, section_name: Optional[str] = None) -> torch.Tensor:
|
| 134 |
-
"""
|
| 135 |
-
Forward pass through the dynamic model architecture.
|
| 136 |
-
|
| 137 |
-
Args:
|
| 138 |
-
x (torch.Tensor): Input tensor to process
|
| 139 |
-
section_name (Optional[str]): Specific section to process. If None, processes all sections
|
| 140 |
-
|
| 141 |
-
Returns:
|
| 142 |
-
torch.Tensor: Processed output tensor
|
| 143 |
-
|
| 144 |
-
Raises:
|
| 145 |
-
KeyError: If specified section_name doesn't exist
|
| 146 |
-
"""
|
| 147 |
if section_name is not None:
|
| 148 |
if section_name not in self.sections:
|
| 149 |
raise KeyError(f"Section '{section_name}' not found in model")
|
|
@@ -184,19 +109,6 @@ class DynamicFlashAttentionLayer(nn.Module):
|
|
| 184 |
return attn_output.squeeze(1)
|
| 185 |
|
| 186 |
def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
|
| 187 |
-
"""
|
| 188 |
-
Parses an XML configuration file to extract layer parameters for neural network construction.
|
| 189 |
-
|
| 190 |
-
Args:
|
| 191 |
-
file_path (str): Path to the XML configuration file
|
| 192 |
-
|
| 193 |
-
Returns:
|
| 194 |
-
List[Dict[str, Any]]: List of dictionaries containing layer configurations
|
| 195 |
-
|
| 196 |
-
Raises:
|
| 197 |
-
ET.ParseError: If XML file is malformed
|
| 198 |
-
KeyError: If required attributes are missing in XML
|
| 199 |
-
"""
|
| 200 |
tree = ET.parse(file_path)
|
| 201 |
root = tree.getroot()
|
| 202 |
|
|
@@ -207,18 +119,15 @@ def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
|
|
| 207 |
layer_params['output_size'] = int(layer.get('output_size', 256))
|
| 208 |
layer_params['activation'] = layer.get('activation', 'relu').lower()
|
| 209 |
|
| 210 |
-
# Validate activation function
|
| 211 |
if layer_params['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']:
|
| 212 |
raise ValueError(f"Unsupported activation function: {layer_params['activation']}")
|
| 213 |
|
| 214 |
-
# Validate dimensions
|
| 215 |
if layer_params['input_size'] <= 0 or layer_params['output_size'] <= 0:
|
| 216 |
raise ValueError("Layer dimensions must be positive integers")
|
| 217 |
|
| 218 |
layers.append(layer_params)
|
| 219 |
|
| 220 |
if not layers:
|
| 221 |
-
# Fallback to default configuration if no layers found
|
| 222 |
layers.append({
|
| 223 |
'input_size': 128,
|
| 224 |
'output_size': 256,
|
|
@@ -228,23 +137,6 @@ def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
|
|
| 228 |
return layers
|
| 229 |
|
| 230 |
def create_model_from_folder(folder_path: str) -> DynamicModel:
|
| 231 |
-
"""
|
| 232 |
-
Creates a DynamicModel instance by parsing XML files in the specified folder structure.
|
| 233 |
-
|
| 234 |
-
Each subfolder represents a model section, and XML files within contain layer configurations.
|
| 235 |
-
The function recursively walks through the folder structure, processing all XML files to build
|
| 236 |
-
the model architecture.
|
| 237 |
-
|
| 238 |
-
Args:
|
| 239 |
-
folder_path (str): Path to the root folder containing XML configuration files
|
| 240 |
-
|
| 241 |
-
Returns:
|
| 242 |
-
DynamicModel: A configured neural network model based on the XML specifications
|
| 243 |
-
|
| 244 |
-
Raises:
|
| 245 |
-
FileNotFoundError: If the specified folder path doesn't exist
|
| 246 |
-
ET.ParseError: If XML parsing fails for any configuration file
|
| 247 |
-
"""
|
| 248 |
sections = defaultdict(list)
|
| 249 |
|
| 250 |
if not os.path.exists(folder_path):
|
|
@@ -259,7 +151,7 @@ def create_model_from_folder(folder_path: str) -> DynamicModel:
|
|
| 259 |
file_path = os.path.join(root, file)
|
| 260 |
try:
|
| 261 |
layers = parse_xml_file(file_path)
|
| 262 |
-
section_name = os.path.basename(root).replace('.', '_')
|
| 263 |
sections[section_name].extend(layers)
|
| 264 |
except Exception as e:
|
| 265 |
print(f"Error processing {file_path}: {str(e)}")
|
|
@@ -271,43 +163,25 @@ def create_model_from_folder(folder_path: str) -> DynamicModel:
|
|
| 271 |
return DynamicModel(dict(sections))
|
| 272 |
|
| 273 |
def main():
|
| 274 |
-
"""
|
| 275 |
-
Main function that demonstrates the creation and training of a dynamic PyTorch model.
|
| 276 |
-
|
| 277 |
-
This function:
|
| 278 |
-
1. Creates a dynamic model from XML configurations
|
| 279 |
-
2. Sets up distributed training environment using Accelerator
|
| 280 |
-
3. Configures optimization components (optimizer, loss function)
|
| 281 |
-
4. Creates synthetic dataset for demonstration
|
| 282 |
-
5. Implements distributed training loop with loss tracking
|
| 283 |
-
|
| 284 |
-
The model architecture is determined by XML files in the 'Xml_Data' folder,
|
| 285 |
-
where each subfolder represents a model section containing layer configurations.
|
| 286 |
-
"""
|
| 287 |
folder_path = 'data'
|
| 288 |
model = create_model_from_folder(folder_path)
|
| 289 |
|
| 290 |
print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
|
| 291 |
|
| 292 |
-
# Dynamically determine input size from first layer configuration
|
| 293 |
first_section = next(iter(model.sections.keys()))
|
| 294 |
first_layer = model.sections[first_section][0]
|
| 295 |
input_features = first_layer[0].in_features
|
| 296 |
|
| 297 |
-
# Validate model with sample input
|
| 298 |
sample_input = torch.randn(1, input_features)
|
| 299 |
output = model(sample_input)
|
| 300 |
print(f"Sample output shape: {output.shape}")
|
| 301 |
|
| 302 |
-
# Initialize distributed training components
|
| 303 |
accelerator = Accelerator()
|
| 304 |
|
| 305 |
-
# Configure training parameters and optimization components
|
| 306 |
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
| 307 |
criterion = nn.CrossEntropyLoss()
|
| 308 |
num_epochs = 10
|
| 309 |
|
| 310 |
-
# Generate synthetic dataset for demonstration purposes
|
| 311 |
dataset = torch.utils.data.TensorDataset(
|
| 312 |
torch.randn(100, input_features),
|
| 313 |
torch.randint(0, 2, (100,))
|
|
@@ -318,14 +192,12 @@ def main():
|
|
| 318 |
shuffle=True
|
| 319 |
)
|
| 320 |
|
| 321 |
-
# Prepare model, optimizer, and dataloader for distributed training
|
| 322 |
model, optimizer, train_dataloader = accelerator.prepare(
|
| 323 |
model,
|
| 324 |
optimizer,
|
| 325 |
train_dataloader
|
| 326 |
)
|
| 327 |
|
| 328 |
-
# Execute training loop with distributed processing
|
| 329 |
for epoch in range(num_epochs):
|
| 330 |
model.train()
|
| 331 |
total_loss = 0
|
|
|
|
| 9 |
|
| 10 |
class DynamicModel(nn.Module):
|
| 11 |
def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
super(DynamicModel, self).__init__()
|
| 13 |
self.sections = nn.ModuleDict()
|
| 14 |
|
|
|
|
| 15 |
if not sections:
|
| 16 |
sections = {
|
| 17 |
'default': [{
|
|
|
|
| 23 |
}]
|
| 24 |
}
|
| 25 |
|
|
|
|
| 26 |
for section_name, layers in sections.items():
|
| 27 |
self.sections[section_name] = nn.ModuleList()
|
| 28 |
for layer_params in layers:
|
| 29 |
+
print(f"Creating layer in section '{section_name}' with params: {layer_params}")
|
| 30 |
self.sections[section_name].append(self.create_layer(layer_params))
|
| 31 |
|
| 32 |
def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
layers = []
|
|
|
|
|
|
|
| 34 |
layers.append(nn.Linear(layer_params['input_size'], layer_params['output_size']))
|
| 35 |
|
|
|
|
| 36 |
if layer_params.get('batch_norm', False):
|
| 37 |
layers.append(nn.BatchNorm1d(layer_params['output_size']))
|
| 38 |
|
|
|
|
| 39 |
activation = layer_params.get('activation', 'relu')
|
| 40 |
if activation == 'relu':
|
| 41 |
layers.append(nn.ReLU(inplace=True))
|
|
|
|
| 50 |
elif activation is not None:
|
| 51 |
raise ValueError(f"Unsupported activation function: {activation}")
|
| 52 |
|
|
|
|
| 53 |
if dropout_rate := layer_params.get('dropout', 0.0):
|
| 54 |
layers.append(nn.Dropout(p=dropout_rate))
|
| 55 |
|
|
|
|
| 56 |
if hidden_layers := layer_params.get('hidden_layers', []):
|
| 57 |
for hidden_layer_params in hidden_layers:
|
| 58 |
layers.append(self.create_layer(hidden_layer_params))
|
| 59 |
|
|
|
|
| 60 |
if layer_params.get('memory_augmentation', False):
|
| 61 |
layers.append(MemoryAugmentationLayer(layer_params['output_size']))
|
| 62 |
|
|
|
|
| 63 |
if layer_params.get('hybrid_attention', False):
|
| 64 |
layers.append(HybridAttentionLayer(layer_params['output_size']))
|
| 65 |
|
|
|
|
| 66 |
if layer_params.get('dynamic_flash_attention', False):
|
| 67 |
layers.append(DynamicFlashAttentionLayer(layer_params['output_size']))
|
| 68 |
|
| 69 |
return nn.Sequential(*layers)
|
| 70 |
|
| 71 |
def forward(self, x: torch.Tensor, section_name: Optional[str] = None) -> torch.Tensor:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
if section_name is not None:
|
| 73 |
if section_name not in self.sections:
|
| 74 |
raise KeyError(f"Section '{section_name}' not found in model")
|
|
|
|
| 109 |
return attn_output.squeeze(1)
|
| 110 |
|
| 111 |
def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
tree = ET.parse(file_path)
|
| 113 |
root = tree.getroot()
|
| 114 |
|
|
|
|
| 119 |
layer_params['output_size'] = int(layer.get('output_size', 256))
|
| 120 |
layer_params['activation'] = layer.get('activation', 'relu').lower()
|
| 121 |
|
|
|
|
| 122 |
if layer_params['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']:
|
| 123 |
raise ValueError(f"Unsupported activation function: {layer_params['activation']}")
|
| 124 |
|
|
|
|
| 125 |
if layer_params['input_size'] <= 0 or layer_params['output_size'] <= 0:
|
| 126 |
raise ValueError("Layer dimensions must be positive integers")
|
| 127 |
|
| 128 |
layers.append(layer_params)
|
| 129 |
|
| 130 |
if not layers:
|
|
|
|
| 131 |
layers.append({
|
| 132 |
'input_size': 128,
|
| 133 |
'output_size': 256,
|
|
|
|
| 137 |
return layers
|
| 138 |
|
| 139 |
def create_model_from_folder(folder_path: str) -> DynamicModel:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
sections = defaultdict(list)
|
| 141 |
|
| 142 |
if not os.path.exists(folder_path):
|
|
|
|
| 151 |
file_path = os.path.join(root, file)
|
| 152 |
try:
|
| 153 |
layers = parse_xml_file(file_path)
|
| 154 |
+
section_name = os.path.basename(root).replace('.', '_')
|
| 155 |
sections[section_name].extend(layers)
|
| 156 |
except Exception as e:
|
| 157 |
print(f"Error processing {file_path}: {str(e)}")
|
|
|
|
| 163 |
return DynamicModel(dict(sections))
|
| 164 |
|
| 165 |
def main():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
folder_path = 'data'
|
| 167 |
model = create_model_from_folder(folder_path)
|
| 168 |
|
| 169 |
print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
|
| 170 |
|
|
|
|
| 171 |
first_section = next(iter(model.sections.keys()))
|
| 172 |
first_layer = model.sections[first_section][0]
|
| 173 |
input_features = first_layer[0].in_features
|
| 174 |
|
|
|
|
| 175 |
sample_input = torch.randn(1, input_features)
|
| 176 |
output = model(sample_input)
|
| 177 |
print(f"Sample output shape: {output.shape}")
|
| 178 |
|
|
|
|
| 179 |
accelerator = Accelerator()
|
| 180 |
|
|
|
|
| 181 |
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
| 182 |
criterion = nn.CrossEntropyLoss()
|
| 183 |
num_epochs = 10
|
| 184 |
|
|
|
|
| 185 |
dataset = torch.utils.data.TensorDataset(
|
| 186 |
torch.randn(100, input_features),
|
| 187 |
torch.randint(0, 2, (100,))
|
|
|
|
| 192 |
shuffle=True
|
| 193 |
)
|
| 194 |
|
|
|
|
| 195 |
model, optimizer, train_dataloader = accelerator.prepare(
|
| 196 |
model,
|
| 197 |
optimizer,
|
| 198 |
train_dataloader
|
| 199 |
)
|
| 200 |
|
|
|
|
| 201 |
for epoch in range(num_epochs):
|
| 202 |
model.train()
|
| 203 |
total_loss = 0
|