Spaces:
Runtime error
Runtime error
Update 2.py
Browse files
2.py
CHANGED
|
@@ -8,20 +8,6 @@ from tqdm import tqdm
|
|
| 8 |
|
| 9 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 10 |
|
| 11 |
-
|
| 12 |
-
# Set the cache directory path
|
| 13 |
-
cache_dir = '/app/cache'
|
| 14 |
-
|
| 15 |
-
# Create the directory if it doesn't exist
|
| 16 |
-
if not os.path.exists(cache_dir):
|
| 17 |
-
os.makedirs(cache_dir)
|
| 18 |
-
|
| 19 |
-
# Set the environment variable
|
| 20 |
-
os.environ['HF_HOME'] = cache_dir
|
| 21 |
-
|
| 22 |
-
# Verify the environment variable is set
|
| 23 |
-
print(f"HF_HOME is set to: {os.environ['HF_HOME']}")
|
| 24 |
-
|
| 25 |
class Config: E, H, N, C, B, M, S, V, W, L, D = 512, 32, 1024, 256, 128, 20000, 2048, 1e5, 4000, 2e-4, .15
|
| 26 |
|
| 27 |
class MyDataset(Dataset):
|
|
@@ -90,7 +76,7 @@ def create_model_from_folder(folder_path):
|
|
| 90 |
s[os.path.basename(r).replace('.', '_')].extend(parse_xml(os.path.join(r, file)))
|
| 91 |
return DM(dict(s))
|
| 92 |
|
| 93 |
-
def create_embeddings_and_sentences(folder_path, model_name="pile-of-law/legalbert-large-1.7M-1"):
|
| 94 |
t, m, embeddings, ds = AutoTokenizer.from_pretrained(model_name), AutoModel.from_pretrained(model_name), [], []
|
| 95 |
for r, d, f in os.walk(folder_path):
|
| 96 |
for file in f:
|
|
@@ -99,15 +85,15 @@ def create_embeddings_and_sentences(folder_path, model_name="pile-of-law/legalbe
|
|
| 99 |
for e in root.iter():
|
| 100 |
if e.text:
|
| 101 |
text = e.text.strip()
|
| 102 |
-
i = t(text, return_tensors="pt", truncation=True, padding=True)
|
| 103 |
with torch.no_grad():
|
| 104 |
embeddings.append(m(**i).last_hidden_state.mean(dim=1).numpy())
|
| 105 |
ds.append(text)
|
| 106 |
return np.vstack(embeddings), ds
|
| 107 |
|
| 108 |
-
def query_vector_similarity(query, embeddings, ds, model_name="pile-of-law/legalbert-large-1.7M-2"):
|
| 109 |
t, m = AutoTokenizer.from_pretrained(model_name), AutoModel.from_pretrained(model_name)
|
| 110 |
-
i = t(query, return_tensors="pt", truncation=True, padding=True)
|
| 111 |
with torch.no_grad():
|
| 112 |
qe = m(**i).last_hidden_state.mean(dim=1).numpy()
|
| 113 |
return [ds[i] for i in cosine_similarity(qe, embeddings)[0].argsort()[-5:][::-1]]
|
|
@@ -122,7 +108,7 @@ def fetch_courtlistener_data(query):
|
|
| 122 |
return []
|
| 123 |
|
| 124 |
def main():
|
| 125 |
-
folder_path, model = 'data', create_model_from_folder('
|
| 126 |
logging.info(f"Created dynamic PyTorch model with sections: {list(model.s.keys())}")
|
| 127 |
embeddings, ds = create_embeddings_and_sentences(folder_path)
|
| 128 |
accelerator, optimizer, criterion, num_epochs = Accelerator(), torch.optim.Adam(model.parameters(), lr=0.001), nn.CrossEntropyLoss(), 10
|
|
|
|
| 8 |
|
| 9 |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
class Config: E, H, N, C, B, M, S, V, W, L, D = 512, 32, 1024, 256, 128, 20000, 2048, 1e5, 4000, 2e-4, .15
|
| 12 |
|
| 13 |
class MyDataset(Dataset):
|
|
|
|
| 76 |
s[os.path.basename(r).replace('.', '_')].extend(parse_xml(os.path.join(r, file)))
|
| 77 |
return DM(dict(s))
|
| 78 |
|
| 79 |
+
def create_embeddings_and_sentences(folder_path, model_name="pile-of-law/legalbert-large-1.7M-1", max_length=512):
|
| 80 |
t, m, embeddings, ds = AutoTokenizer.from_pretrained(model_name), AutoModel.from_pretrained(model_name), [], []
|
| 81 |
for r, d, f in os.walk(folder_path):
|
| 82 |
for file in f:
|
|
|
|
| 85 |
for e in root.iter():
|
| 86 |
if e.text:
|
| 87 |
text = e.text.strip()
|
| 88 |
+
i = t(text, return_tensors="pt", truncation=True, padding=True, max_length=max_length)
|
| 89 |
with torch.no_grad():
|
| 90 |
embeddings.append(m(**i).last_hidden_state.mean(dim=1).numpy())
|
| 91 |
ds.append(text)
|
| 92 |
return np.vstack(embeddings), ds
|
| 93 |
|
| 94 |
+
def query_vector_similarity(query, embeddings, ds, model_name="pile-of-law/legalbert-large-1.7M-2", max_length=512):
|
| 95 |
t, m = AutoTokenizer.from_pretrained(model_name), AutoModel.from_pretrained(model_name)
|
| 96 |
+
i = t(query, return_tensors="pt", truncation=True, padding=True, max_length=max_length)
|
| 97 |
with torch.no_grad():
|
| 98 |
qe = m(**i).last_hidden_state.mean(dim=1).numpy()
|
| 99 |
return [ds[i] for i in cosine_similarity(qe, embeddings)[0].argsort()[-5:][::-1]]
|
|
|
|
| 108 |
return []
|
| 109 |
|
| 110 |
def main():
|
| 111 |
+
folder_path, model = 'data', create_model_from_folder('Xml_Data')
|
| 112 |
logging.info(f"Created dynamic PyTorch model with sections: {list(model.s.keys())}")
|
| 113 |
embeddings, ds = create_embeddings_and_sentences(folder_path)
|
| 114 |
accelerator, optimizer, criterion, num_epochs = Accelerator(), torch.optim.Adam(model.parameters(), lr=0.001), nn.CrossEntropyLoss(), 10
|