Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import fitz # PyMuPDF | |
| client = InferenceClient("opennyaiorg/Aalap-Mistral-7B-v0.1-bf16") | |
| def extract_text_from_pdf(pdf_file): | |
| document = fitz.open(pdf_file.name) | |
| text = "" | |
| for page_num in range(len(document)): | |
| page = document.load_page(page_num) | |
| text += page.get_text() | |
| return text | |
| def summarize_pdf(pdf_file, max_tokens, temperature, top_p): | |
| text = extract_text_from_pdf(pdf_file) | |
| response = "" | |
| messages = [{"role": "user", "content": f"Summarize the following text: {text}"}] | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| def ner_pdf(pdf_file, max_tokens, temperature, top_p): | |
| text = extract_text_from_pdf(pdf_file) | |
| response = "" | |
| messages = [{"role": "user", "content": f"Extract named entities from the following text: {text}"}] | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| def qa_pdf(pdf_file, question, max_tokens, temperature, top_p): | |
| text = extract_text_from_pdf(pdf_file) | |
| response = "" | |
| messages = [{"role": "user", "content": f"Answer the question '{question}' based on the following text: {text}"}] | |
| for message in client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message.choices[0].delta.content | |
| response += token | |
| yield response | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# NLP Tasks on PDF Documents") | |
| with gr.Tab("Summarization"): | |
| pdf_file = gr.File(label="Upload PDF") | |
| summarize_button = gr.Button("Summarize") | |
| summary_output = gr.Textbox(label="Summary") | |
| summarize_button.click(summarize_pdf, inputs=[pdf_file, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=summary_output) | |
| with gr.Tab("Named Entity Recognition (NER)"): | |
| pdf_file = gr.File(label="Upload PDF") | |
| ner_button = gr.Button("Extract Entities") | |
| ner_output = gr.JSON(label="Entities") | |
| ner_button.click(ner_pdf, inputs=[pdf_file, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=ner_output) | |
| with gr.Tab("Question Answering"): | |
| pdf_file = gr.File(label="Upload PDF") | |
| question_input = gr.Textbox(label="Enter your question") | |
| qa_button = gr.Button("Get Answer") | |
| qa_output = gr.Textbox(label="Answer") | |
| qa_button.click(qa_pdf, inputs=[pdf_file, question_input, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=qa_output) | |
| if __name__ == "__main__": | |
| demo.launch() | |