correct JSON and filtering
Browse files
input_output/wjec-gce-as-a-economics-specification-from-2015.pdf
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eef6fa3102f82c9a3e0eb99a8c7a08f86df01c2ba7636ff4bef8cbd7f780e7b6
|
| 3 |
+
size 3543551
|
pearson_json/_subtopics.json
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"title": "Content",
|
| 4 |
+
"contents": [
|
| 5 |
+
{
|
| 6 |
+
"type": "image",
|
| 7 |
+
"key": "/topic-extraction/cells/img_1.jpg_r0_c0.png"
|
| 8 |
+
},
|
| 9 |
+
{
|
| 10 |
+
"type": "image",
|
| 11 |
+
"key": "/topic-extraction/cells/img_3.jpg_r0_c0.png"
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"type": "image",
|
| 15 |
+
"key": "/topic-extraction/cells/img_4.jpg_r1_c0.png"
|
| 16 |
+
},
|
| 17 |
+
{
|
| 18 |
+
"type": "image",
|
| 19 |
+
"key": "/topic-extraction/cells/img_5.jpg_r0_c0.png"
|
| 20 |
+
},
|
| 21 |
+
{
|
| 22 |
+
"type": "image",
|
| 23 |
+
"key": "/topic-extraction/cells/img_6.jpg_r0_c0.png"
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"type": "image",
|
| 27 |
+
"key": "/topic-extraction/cells/img_9.jpg_r0_c0.png"
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"type": "image",
|
| 31 |
+
"key": "/topic-extraction/cells/img_15.jpg_r0_c0.png"
|
| 32 |
+
},
|
| 33 |
+
{
|
| 34 |
+
"type": "image",
|
| 35 |
+
"key": "/topic-extraction/cells/img_16.jpg_r0_c0.png"
|
| 36 |
+
},
|
| 37 |
+
{
|
| 38 |
+
"type": "image",
|
| 39 |
+
"key": "/topic-extraction/cells/img_18.jpg_r0_c0.png"
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"type": "image",
|
| 43 |
+
"key": "/topic-extraction/cells/img_19.jpg_r0_c0.png"
|
| 44 |
+
},
|
| 45 |
+
{
|
| 46 |
+
"type": "image",
|
| 47 |
+
"key": "/topic-extraction/cells/img_20.jpg_r0_c0.png"
|
| 48 |
+
},
|
| 49 |
+
{
|
| 50 |
+
"type": "image",
|
| 51 |
+
"key": "/topic-extraction/cells/img_22.jpg_r0_c0.png"
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"type": "image",
|
| 55 |
+
"key": "/topic-extraction/cells/img_23.jpg_r0_c0.png"
|
| 56 |
+
},
|
| 57 |
+
{
|
| 58 |
+
"type": "image",
|
| 59 |
+
"key": "/topic-extraction/cells/img_27.jpg_r0_c0.png"
|
| 60 |
+
},
|
| 61 |
+
{
|
| 62 |
+
"type": "image",
|
| 63 |
+
"key": "/topic-extraction/cells/img_28.jpg_r0_c0.png"
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"type": "image",
|
| 67 |
+
"key": "/topic-extraction/cells/img_29.jpg_r0_c0.png"
|
| 68 |
+
}
|
| 69 |
+
],
|
| 70 |
+
"children": []
|
| 71 |
+
},
|
| 72 |
+
{
|
| 73 |
+
"title": "Factors influencing demand and supply in product markets",
|
| 74 |
+
"contents": [
|
| 75 |
+
{
|
| 76 |
+
"type": "image",
|
| 77 |
+
"key": "/topic-extraction/cells/img_2.jpg_r1_c0.png"
|
| 78 |
+
}
|
| 79 |
+
],
|
| 80 |
+
"children": []
|
| 81 |
+
},
|
| 82 |
+
{
|
| 83 |
+
"title": "Why and how governments intervene in markets",
|
| 84 |
+
"contents": [
|
| 85 |
+
{
|
| 86 |
+
"type": "image",
|
| 87 |
+
"key": "/topic-extraction/cells/img_7.jpg_r1_c0.png"
|
| 88 |
+
}
|
| 89 |
+
],
|
| 90 |
+
"children": []
|
| 91 |
+
},
|
| 92 |
+
{
|
| 93 |
+
"title": "The circular flow of income model",
|
| 94 |
+
"contents": [
|
| 95 |
+
{
|
| 96 |
+
"type": "image",
|
| 97 |
+
"key": "/topic-extraction/cells/img_8.jpg_r2_c0.png"
|
| 98 |
+
}
|
| 99 |
+
],
|
| 100 |
+
"children": []
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"title": "Government policy objectives",
|
| 104 |
+
"contents": [
|
| 105 |
+
{
|
| 106 |
+
"type": "image",
|
| 107 |
+
"key": "/topic-extraction/cells/img_10.jpg_r1_c0.png"
|
| 108 |
+
}
|
| 109 |
+
],
|
| 110 |
+
"children": []
|
| 111 |
+
},
|
| 112 |
+
{
|
| 113 |
+
"title": "Fiscal policy",
|
| 114 |
+
"contents": [
|
| 115 |
+
{
|
| 116 |
+
"type": "image",
|
| 117 |
+
"key": "/topic-extraction/cells/img_11.jpg_r1_c0.png"
|
| 118 |
+
}
|
| 119 |
+
],
|
| 120 |
+
"children": []
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"title": "Monetary policy",
|
| 124 |
+
"contents": [
|
| 125 |
+
{
|
| 126 |
+
"type": "image",
|
| 127 |
+
"key": "/topic-extraction/cells/img_12.jpg_r1_c0.png"
|
| 128 |
+
}
|
| 129 |
+
],
|
| 130 |
+
"children": []
|
| 131 |
+
},
|
| 132 |
+
{
|
| 133 |
+
"title": "Exchange rates and exchange rate policy",
|
| 134 |
+
"contents": [
|
| 135 |
+
{
|
| 136 |
+
"type": "image",
|
| 137 |
+
"key": "/topic-extraction/cells/img_13.jpg_r1_c0.png"
|
| 138 |
+
}
|
| 139 |
+
],
|
| 140 |
+
"children": []
|
| 141 |
+
},
|
| 142 |
+
{
|
| 143 |
+
"title": "Free trade and protectionism",
|
| 144 |
+
"contents": [
|
| 145 |
+
{
|
| 146 |
+
"type": "image",
|
| 147 |
+
"key": "/topic-extraction/cells/img_14.jpg_r1_c0.png"
|
| 148 |
+
}
|
| 149 |
+
],
|
| 150 |
+
"children": []
|
| 151 |
+
},
|
| 152 |
+
{
|
| 153 |
+
"title": "Monopoly",
|
| 154 |
+
"contents": [
|
| 155 |
+
{
|
| 156 |
+
"type": "image",
|
| 157 |
+
"key": "/topic-extraction/cells/img_17.jpg_r2_c0.png"
|
| 158 |
+
}
|
| 159 |
+
],
|
| 160 |
+
"children": []
|
| 161 |
+
},
|
| 162 |
+
{
|
| 163 |
+
"title": "Economic growth",
|
| 164 |
+
"contents": [
|
| 165 |
+
{
|
| 166 |
+
"type": "image",
|
| 167 |
+
"key": "/topic-extraction/cells/img_21.jpg_r1_c0.png"
|
| 168 |
+
}
|
| 169 |
+
],
|
| 170 |
+
"children": []
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"title": "Inflation and deflation",
|
| 174 |
+
"contents": [
|
| 175 |
+
{
|
| 176 |
+
"type": "image",
|
| 177 |
+
"key": "/topic-extraction/cells/img_24.jpg_r1_c0.png"
|
| 178 |
+
}
|
| 179 |
+
],
|
| 180 |
+
"children": []
|
| 181 |
+
},
|
| 182 |
+
{
|
| 183 |
+
"title": "The balance of payments",
|
| 184 |
+
"contents": [
|
| 185 |
+
{
|
| 186 |
+
"type": "image",
|
| 187 |
+
"key": "/topic-extraction/cells/img_25.jpg_r2_c0.png"
|
| 188 |
+
}
|
| 189 |
+
],
|
| 190 |
+
"children": []
|
| 191 |
+
},
|
| 192 |
+
{
|
| 193 |
+
"title": "Control of the national (public sector) debt",
|
| 194 |
+
"contents": [
|
| 195 |
+
{
|
| 196 |
+
"type": "image",
|
| 197 |
+
"key": "/topic-extraction/cells/img_26.jpg_r1_c0.png"
|
| 198 |
+
}
|
| 199 |
+
],
|
| 200 |
+
"children": []
|
| 201 |
+
}
|
| 202 |
+
]
|
topic_extr.py
CHANGED
|
@@ -207,6 +207,13 @@ class s3Writer:
|
|
| 207 |
logger.error(f"Failed to upload to S3: {str(e)}")
|
| 208 |
raise
|
| 209 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 210 |
def preprocess_image(image_data: bytes, max_dim: int = 600, quality: int = 60) -> bytes:
|
| 211 |
arr = np.frombuffer(image_data, np.uint8)
|
| 212 |
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
|
@@ -238,11 +245,6 @@ The two-column 'table' image includes such key features:
|
|
| 238 |
- Two columns
|
| 239 |
- Headers like 'Subject content', 'Additional information'
|
| 240 |
- Possibly sections (e.g. 2.1, 3.4, G2, G3, )
|
| 241 |
-
The empty image include such key features:
|
| 242 |
-
- Does not include anything at all (like a blank white or black image)
|
| 243 |
-
- Truncated image with words like 'Subject content', 'What students need to learn' with blue background.
|
| 244 |
-
- Truncated image with words like 'Topics', 'What students need to learn', 'Content' with grey background ((166, 166, 166) or (180,180,180) RGB color code).
|
| 245 |
-
If the image is an empty image, respond with 'EMPTY_IMAGE'.
|
| 246 |
If the image is a relevant table with 2 columns, respond with 'TWO_COLUMN'.
|
| 247 |
If the image is a relevant table with 3 columns, respond with 'THREE_COLUMN'.
|
| 248 |
If the image is non-empty but does not show a table, respond with 'NO_TABLE'.
|
|
@@ -309,7 +311,7 @@ Your task is to extract:
|
|
| 309 |
|
| 310 |
Follow these rules:
|
| 311 |
|
| 312 |
-
(1) **If the cell shows a main topic in the format "<number> <Topic Name>",** for example "2 Algebra and functions continued", then:
|
| 313 |
- Put that text (without the word "continued") in "title". (e.g. "2 Algebra and functions")
|
| 314 |
- "subtopics" should be an empty array, unless you also see smaller subtopic numbers.
|
| 315 |
|
|
@@ -318,11 +320,11 @@ Follow these rules:
|
|
| 318 |
- "title" in this case should be an empty string if you only detect subtopics.
|
| 319 |
(Example: If text is "2.5 Solve linear inequalities...", then "title" = "", "subtopics" = ["2.5"]).
|
| 320 |
|
| 321 |
-
(3)
|
| 322 |
-
{
|
| 323 |
"title": "",
|
| 324 |
"subtopics": []
|
| 325 |
-
}
|
| 326 |
|
| 327 |
(4) **If there is no numeric value in the left column** (e.g. "2.1" or "2 <Topic name>" not found) but the left column text appears to be a heading (for instance "Scarcity, choice and opportunity cost"), then:
|
| 328 |
- Use the **left column text** as "title".
|
|
@@ -344,6 +346,15 @@ Follow these rules:
|
|
| 344 |
"subtopics": [...]
|
| 345 |
}
|
| 346 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
**Examples**:
|
| 348 |
|
| 349 |
- If the image text is `"2 Algebra and functions continued"`, return:
|
|
@@ -411,6 +422,8 @@ Follow these rules:
|
|
| 411 |
|
| 412 |
title = data.get("title", "")
|
| 413 |
subtopics = data.get("subtopics", [])
|
|
|
|
|
|
|
| 414 |
if not isinstance(subtopics, list):
|
| 415 |
subtopics = []
|
| 416 |
return {"title": title, "subtopics": subtopics}
|
|
@@ -454,21 +467,27 @@ class S3ImageWriter(DataWriter):
|
|
| 454 |
for p, info in self.descriptions.items()
|
| 455 |
}
|
| 456 |
results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
| 457 |
-
for p, result in zip(
|
| 458 |
if isinstance(result, Exception):
|
| 459 |
logger.error(f"Table classification error for {p}: {result}")
|
| 460 |
self.descriptions[p]['table_classification'] = "NO_TABLE"
|
| 461 |
else:
|
| 462 |
self.descriptions[p]['table_classification'] = result
|
| 463 |
|
| 464 |
-
|
|
|
|
| 465 |
cls = info['table_classification']
|
| 466 |
if cls == "TWO_COLUMN":
|
| 467 |
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
|
| 468 |
elif cls == "THREE_COLUMN":
|
| 469 |
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
|
| 470 |
elif cls == "EMPTY_IMAGE":
|
|
|
|
| 471 |
md_content = md_content.replace(f"", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 472 |
del self.descriptions[p]
|
| 473 |
continue
|
| 474 |
else:
|
|
@@ -477,7 +496,7 @@ class S3ImageWriter(DataWriter):
|
|
| 477 |
|
| 478 |
md_content = await self._process_table_images_in_markdown(key, md_content)
|
| 479 |
|
| 480 |
-
# Filter final lines to keep only lines with images
|
| 481 |
final_lines = [
|
| 482 |
line.strip() for line in md_content.split("\n")
|
| 483 |
if re.match(r"^\!\[.*\]\(.*\)", line.strip())
|
|
@@ -558,12 +577,20 @@ class S3ImageWriter(DataWriter):
|
|
| 558 |
with open(cell_path, "rb") as cf:
|
| 559 |
cell_image_data = cf.read()
|
| 560 |
|
| 561 |
-
# Save cell image to S3.
|
| 562 |
cell_key = f"{self.base_path}cells/{os.path.basename(s3_key)}_r{i}_c{j}.png"
|
| 563 |
self.s3_writer.write(cell_key, cell_image_data)
|
| 564 |
-
|
|
|
|
| 565 |
info = call_gemini_for_subtopic_identification_image(cell_image_data, self.gemini_api_key)
|
| 566 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 567 |
|
| 568 |
if info["title"] and not recognized_main_topic:
|
| 569 |
recognized_main_topic = info["title"]
|
|
@@ -706,6 +733,15 @@ In that scenario, your output might look like:
|
|
| 706 |
"2.3 A2 Unit 3": [24, 30],
|
| 707 |
"2.4 A2 Unit 4": [31, 35]
|
| 708 |
}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 709 |
4. Another example might list subtopics:
|
| 710 |
3.1 Overarching themes 11
|
| 711 |
3.2 A: Proof 12
|
|
@@ -912,7 +948,7 @@ class MineruNoTextProcessor:
|
|
| 912 |
subtopic_list = list(writer.extracted_subtopics.values())
|
| 913 |
subtopic_list = merge_topics(subtopic_list)
|
| 914 |
|
| 915 |
-
out_path = os.path.join(self.output_folder, "
|
| 916 |
with open(out_path, "w", encoding="utf-8") as f:
|
| 917 |
json.dump(subtopic_list, f, indent=2)
|
| 918 |
logger.info(f"Final subtopics JSON saved locally at {out_path}")
|
|
@@ -925,7 +961,7 @@ class MineruNoTextProcessor:
|
|
| 925 |
self.cleanup_gpu()
|
| 926 |
|
| 927 |
if __name__ == "__main__":
|
| 928 |
-
input_pdf = "/home/user/app/input_output/a-
|
| 929 |
output_dir = "/home/user/app/pearson_json"
|
| 930 |
gemini_key = os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
|
| 931 |
try:
|
|
|
|
| 207 |
logger.error(f"Failed to upload to S3: {str(e)}")
|
| 208 |
raise
|
| 209 |
|
| 210 |
+
def delete(self, path: str) -> None:
|
| 211 |
+
try:
|
| 212 |
+
self.client.delete_object(Bucket=self.bucket, Key=path)
|
| 213 |
+
except Exception as e:
|
| 214 |
+
logger.error(f"Failed to delete from S3: {str(e)}")
|
| 215 |
+
raise
|
| 216 |
+
|
| 217 |
def preprocess_image(image_data: bytes, max_dim: int = 600, quality: int = 60) -> bytes:
|
| 218 |
arr = np.frombuffer(image_data, np.uint8)
|
| 219 |
img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
|
|
|
|
| 245 |
- Two columns
|
| 246 |
- Headers like 'Subject content', 'Additional information'
|
| 247 |
- Possibly sections (e.g. 2.1, 3.4, G2, G3, )
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 248 |
If the image is a relevant table with 2 columns, respond with 'TWO_COLUMN'.
|
| 249 |
If the image is a relevant table with 3 columns, respond with 'THREE_COLUMN'.
|
| 250 |
If the image is non-empty but does not show a table, respond with 'NO_TABLE'.
|
|
|
|
| 311 |
|
| 312 |
Follow these rules:
|
| 313 |
|
| 314 |
+
(1) **If the cell shows a main topic in the format "<number> <Topic Name>",** for example "2 Algebra and functions continued", (remove the word "continued") then:
|
| 315 |
- Put that text (without the word "continued") in "title". (e.g. "2 Algebra and functions")
|
| 316 |
- "subtopics" should be an empty array, unless you also see smaller subtopic numbers.
|
| 317 |
|
|
|
|
| 320 |
- "title" in this case should be an empty string if you only detect subtopics.
|
| 321 |
(Example: If text is "2.5 Solve linear inequalities...", then "title" = "", "subtopics" = ["2.5"]).
|
| 322 |
|
| 323 |
+
(3) If no main topic or subtopic is detected but the text appears to be a heading (e.g. "Scarcity, choice and opportunity cost"), return:
|
| 324 |
+
{{
|
| 325 |
"title": "",
|
| 326 |
"subtopics": []
|
| 327 |
+
}}
|
| 328 |
|
| 329 |
(4) **If there is no numeric value in the left column** (e.g. "2.1" or "2 <Topic name>" not found) but the left column text appears to be a heading (for instance "Scarcity, choice and opportunity cost"), then:
|
| 330 |
- Use the **left column text** as "title".
|
|
|
|
| 346 |
"subtopics": [...]
|
| 347 |
}
|
| 348 |
|
| 349 |
+
(7) If the image is blank or truncated, defined as:
|
| 350 |
+
- Contains no words at all (e.g. a blank white or black image)
|
| 351 |
+
- Contains only a truncated snippet of words such as "Topics", "What students need to learn" with blue background
|
| 352 |
+
- Contains a truncated snippet with words like "Topics", "What students need to learn", "Content" with gray background (RGB (166,166,166) or (180,180,180)) then return:
|
| 353 |
+
{{
|
| 354 |
+
"title": "EMPTY_IMAGE",
|
| 355 |
+
"subtopics": []
|
| 356 |
+
}}
|
| 357 |
+
|
| 358 |
**Examples**:
|
| 359 |
|
| 360 |
- If the image text is `"2 Algebra and functions continued"`, return:
|
|
|
|
| 422 |
|
| 423 |
title = data.get("title", "")
|
| 424 |
subtopics = data.get("subtopics", [])
|
| 425 |
+
if title.upper() == "EMPTY_IMAGE":
|
| 426 |
+
return {"title": "EMPTY_IMAGE", "subtopics": []}
|
| 427 |
if not isinstance(subtopics, list):
|
| 428 |
subtopics = []
|
| 429 |
return {"title": title, "subtopics": subtopics}
|
|
|
|
| 467 |
for p, info in self.descriptions.items()
|
| 468 |
}
|
| 469 |
results = await asyncio.gather(*tasks.values(), return_exceptions=True)
|
| 470 |
+
for p, result in zip(list(self.descriptions.keys()), results):
|
| 471 |
if isinstance(result, Exception):
|
| 472 |
logger.error(f"Table classification error for {p}: {result}")
|
| 473 |
self.descriptions[p]['table_classification'] = "NO_TABLE"
|
| 474 |
else:
|
| 475 |
self.descriptions[p]['table_classification'] = result
|
| 476 |
|
| 477 |
+
# Process each image description.
|
| 478 |
+
for p, info in list(self.descriptions.items()):
|
| 479 |
cls = info['table_classification']
|
| 480 |
if cls == "TWO_COLUMN":
|
| 481 |
info['final_alt'] = "HAS TO BE PROCESSED - two column table"
|
| 482 |
elif cls == "THREE_COLUMN":
|
| 483 |
info['final_alt'] = "HAS TO BE PROCESSED - three column table"
|
| 484 |
elif cls == "EMPTY_IMAGE":
|
| 485 |
+
# Remove markdown reference, delete from descriptions and S3.
|
| 486 |
md_content = md_content.replace(f"", "")
|
| 487 |
+
try:
|
| 488 |
+
self.s3_writer.delete(info['s3_path'])
|
| 489 |
+
except Exception as e:
|
| 490 |
+
logger.error(f"Error deleting S3 object {info['s3_path']}: {e}")
|
| 491 |
del self.descriptions[p]
|
| 492 |
continue
|
| 493 |
else:
|
|
|
|
| 496 |
|
| 497 |
md_content = await self._process_table_images_in_markdown(key, md_content)
|
| 498 |
|
| 499 |
+
# Filter final lines to keep only lines with images.
|
| 500 |
final_lines = [
|
| 501 |
line.strip() for line in md_content.split("\n")
|
| 502 |
if re.match(r"^\!\[.*\]\(.*\)", line.strip())
|
|
|
|
| 577 |
with open(cell_path, "rb") as cf:
|
| 578 |
cell_image_data = cf.read()
|
| 579 |
|
|
|
|
| 580 |
cell_key = f"{self.base_path}cells/{os.path.basename(s3_key)}_r{i}_c{j}.png"
|
| 581 |
self.s3_writer.write(cell_key, cell_image_data)
|
| 582 |
+
|
| 583 |
+
#extract subtopic info from the cell image.
|
| 584 |
info = call_gemini_for_subtopic_identification_image(cell_image_data, self.gemini_api_key)
|
| 585 |
+
|
| 586 |
+
# Check if the image is empty.
|
| 587 |
+
if info.get("title", "").upper() == "EMPTY_IMAGE":
|
| 588 |
+
try:
|
| 589 |
+
self.s3_writer.delete(cell_key)
|
| 590 |
+
logger.info(f"Deleted empty cell image from S3: {cell_key}")
|
| 591 |
+
except Exception as e:
|
| 592 |
+
logger.error(f"Error deleting empty cell image {cell_key}: {e}")
|
| 593 |
+
continue # Skip processing this cell further
|
| 594 |
|
| 595 |
if info["title"] and not recognized_main_topic:
|
| 596 |
recognized_main_topic = info["title"]
|
|
|
|
| 733 |
"2.3 A2 Unit 3": [24, 30],
|
| 734 |
"2.4 A2 Unit 4": [31, 35]
|
| 735 |
}}
|
| 736 |
+
or
|
| 737 |
+
2.1 AS units 6
|
| 738 |
+
2.2 AS units 23
|
| 739 |
+
In that scenario, your output might look like:
|
| 740 |
+
{{
|
| 741 |
+
"2.1 AS Unit 1": [6, 2],
|
| 742 |
+
"2.2 AS Unit 2": [23, 43]
|
| 743 |
+
}}
|
| 744 |
+
|
| 745 |
4. Another example might list subtopics:
|
| 746 |
3.1 Overarching themes 11
|
| 747 |
3.2 A: Proof 12
|
|
|
|
| 948 |
subtopic_list = list(writer.extracted_subtopics.values())
|
| 949 |
subtopic_list = merge_topics(subtopic_list)
|
| 950 |
|
| 951 |
+
out_path = os.path.join(self.output_folder, "_subtopics.json")
|
| 952 |
with open(out_path, "w", encoding="utf-8") as f:
|
| 953 |
json.dump(subtopic_list, f, indent=2)
|
| 954 |
logger.info(f"Final subtopics JSON saved locally at {out_path}")
|
|
|
|
| 961 |
self.cleanup_gpu()
|
| 962 |
|
| 963 |
if __name__ == "__main__":
|
| 964 |
+
input_pdf = "/home/user/app/input_output/wjec-gce-as-a-economics-specification-from-2015.pdf"
|
| 965 |
output_dir = "/home/user/app/pearson_json"
|
| 966 |
gemini_key = os.getenv("GEMINI_API_KEY", "AIzaSyDtoakpXa2pjJwcQB6TJ5QaXHNSA5JxcrU")
|
| 967 |
try:
|
topic_extraction.log
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|