Update app.py
Browse files
app.py
CHANGED
|
@@ -1,6 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import spaces
|
| 4 |
import torchaudio
|
| 5 |
from whisperspeech.vq_stoks import RQBottleneckTransformer
|
| 6 |
from encodec.utils import convert_audio
|
|
@@ -8,13 +10,10 @@ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
| 8 |
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
| 9 |
from threading import Thread
|
| 10 |
import logging
|
| 11 |
-
import
|
| 12 |
-
from generate_audio import (
|
| 13 |
-
TTSProcessor,
|
| 14 |
-
)
|
| 15 |
import uuid
|
| 16 |
|
| 17 |
-
device = "cpu"
|
| 18 |
vq_model = RQBottleneckTransformer.load_model(
|
| 19 |
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
| 20 |
).to(device)
|
|
@@ -30,12 +29,11 @@ if use_8bit:
|
|
| 30 |
llm_int8_has_fp16_weight=False,
|
| 31 |
)
|
| 32 |
else:
|
| 33 |
-
model_kwargs["torch_dtype"] = torch.float32
|
| 34 |
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs).to(device)
|
| 35 |
|
| 36 |
-
@spaces.CPU # Change this to use CPU
|
| 37 |
def audio_to_sound_tokens_whisperspeech(audio_path):
|
| 38 |
-
vq_model.ensure_whisper(device)
|
| 39 |
wav, sr = torchaudio.load(audio_path)
|
| 40 |
if sr != 16000:
|
| 41 |
wav = torchaudio.functional.resample(wav, sr, 16000)
|
|
@@ -46,9 +44,8 @@ def audio_to_sound_tokens_whisperspeech(audio_path):
|
|
| 46 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 47 |
return f'<|sound_start|>{result}<|sound_end|>'
|
| 48 |
|
| 49 |
-
@spaces.CPU # Change this to use CPU
|
| 50 |
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
| 51 |
-
vq_model.ensure_whisper(device)
|
| 52 |
wav, sr = torchaudio.load(audio_path)
|
| 53 |
if sr != 16000:
|
| 54 |
wav = torchaudio.functional.resample(wav, sr, 16000)
|
|
@@ -59,53 +56,50 @@ def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
|
| 59 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 60 |
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
| 61 |
|
| 62 |
-
@spaces.CPU # Change this to use CPU
|
| 63 |
def text_to_audio_file(text):
|
| 64 |
id = str(uuid.uuid4())
|
| 65 |
temp_file = f"./user_audio/{id}_temp_audio.wav"
|
| 66 |
-
text = text
|
| 67 |
text_split = "_".join(text.lower().split(" "))
|
| 68 |
if text_split[-1] == ".":
|
| 69 |
text_split = text_split[:-1]
|
| 70 |
-
tts = TTSProcessor(device)
|
| 71 |
tts.convert_text_to_audio_file(text, temp_file)
|
| 72 |
print(f"Saved audio to {temp_file}")
|
| 73 |
return temp_file
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
@
|
| 77 |
def process_input(audio_file=None):
|
| 78 |
-
|
| 79 |
for partial_message in process_audio(audio_file):
|
| 80 |
yield partial_message
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
@spaces.CPU
|
| 84 |
def process_transcribe_input(audio_file=None):
|
| 85 |
-
|
| 86 |
for partial_message in process_audio(audio_file, transcript=True):
|
| 87 |
yield partial_message
|
| 88 |
-
|
| 89 |
class StopOnTokens(StoppingCriteria):
|
| 90 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 91 |
-
|
| 92 |
-
stop_ids = [tokenizer.eos_token_id, 128009] # Adjust this based on your model's tokenizer
|
| 93 |
for stop_id in stop_ids:
|
| 94 |
if input_ids[0][-1] == stop_id:
|
| 95 |
return True
|
| 96 |
return False
|
| 97 |
-
|
| 98 |
-
@spaces.CPU
|
| 99 |
def process_audio(audio_file, transcript=False):
|
| 100 |
if audio_file is None:
|
| 101 |
-
|
| 102 |
|
| 103 |
logging.info(f"Audio file received: {audio_file}")
|
| 104 |
logging.info(f"Audio file type: {type(audio_file)}")
|
| 105 |
|
| 106 |
-
sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file)
|
| 107 |
logging.info("Sound tokens generated successfully")
|
| 108 |
-
|
| 109 |
messages = [
|
| 110 |
{"role": "user", "content": sound_tokens},
|
| 111 |
]
|
|
@@ -115,7 +109,7 @@ def process_audio(audio_file, transcript=False):
|
|
| 115 |
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
| 116 |
input_ids = input_ids.to(model.device)
|
| 117 |
|
| 118 |
-
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 119 |
generation_kwargs = dict(
|
| 120 |
input_ids=input_ids,
|
| 121 |
streamer=streamer,
|
|
@@ -134,10 +128,7 @@ def process_audio(audio_file, transcript=False):
|
|
| 134 |
break
|
| 135 |
partial_message = partial_message.replace("assistant\n\n", "")
|
| 136 |
yield partial_message
|
| 137 |
-
|
| 138 |
-
# # This is a placeholder. Implement actual stopping logic here if needed.
|
| 139 |
-
# return "Generation stopped.", gr.Button.update(interactive=False)
|
| 140 |
-
# take all the examples from the examples folder
|
| 141 |
good_examples = []
|
| 142 |
for file in os.listdir("./examples"):
|
| 143 |
if file.endswith(".wav"):
|
|
@@ -149,6 +140,7 @@ for file in os.listdir("./bad_examples"):
|
|
| 149 |
examples = []
|
| 150 |
examples.extend(good_examples)
|
| 151 |
examples.extend(bad_examples)
|
|
|
|
| 152 |
with gr.Blocks() as iface:
|
| 153 |
gr.Markdown("# Llama3.1-S: checkpoint Aug 19, 2024")
|
| 154 |
gr.Markdown("Enter text to convert to audio, then submit the audio to generate text or Upload Audio")
|
|
@@ -158,8 +150,7 @@ with gr.Blocks() as iface:
|
|
| 158 |
input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio")
|
| 159 |
text_input = gr.Textbox(label="Text Input", visible=False)
|
| 160 |
audio_input = gr.Audio(label="Audio", type="filepath", visible=True)
|
| 161 |
-
|
| 162 |
-
|
| 163 |
convert_button = gr.Button("Make synthetic audio", visible=False)
|
| 164 |
submit_button = gr.Button("Chat with AI using audio")
|
| 165 |
transcrip_button = gr.Button("Make Model transcribe the audio")
|
|
@@ -169,11 +160,11 @@ with gr.Blocks() as iface:
|
|
| 169 |
def update_visibility(input_type):
|
| 170 |
return (gr.update(visible=input_type == "text"),
|
| 171 |
gr.update(visible=input_type == "text"))
|
|
|
|
| 172 |
def convert_and_display(text):
|
| 173 |
audio_file = text_to_audio_file(text)
|
| 174 |
return audio_file
|
| 175 |
-
|
| 176 |
-
return update_visibility("audio")
|
| 177 |
input_type.change(
|
| 178 |
update_visibility,
|
| 179 |
inputs=[input_type],
|
|
@@ -198,7 +189,6 @@ with gr.Blocks() as iface:
|
|
| 198 |
)
|
| 199 |
|
| 200 |
gr.Examples(examples, inputs=[audio_input])
|
|
|
|
| 201 |
iface.queue()
|
| 202 |
-
iface.launch()
|
| 203 |
-
# launch locally
|
| 204 |
-
# iface.launch(server_name="0.0.0.0")
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
os.environ['NUMPY_EXPERIMENTAL_ARRAY_FUNCTION'] = '0'
|
| 3 |
+
|
| 4 |
import gradio as gr
|
| 5 |
import torch
|
|
|
|
| 6 |
import torchaudio
|
| 7 |
from whisperspeech.vq_stoks import RQBottleneckTransformer
|
| 8 |
from encodec.utils import convert_audio
|
|
|
|
| 10 |
from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
|
| 11 |
from threading import Thread
|
| 12 |
import logging
|
| 13 |
+
from generate_audio import TTSProcessor
|
|
|
|
|
|
|
|
|
|
| 14 |
import uuid
|
| 15 |
|
| 16 |
+
device = "cpu"
|
| 17 |
vq_model = RQBottleneckTransformer.load_model(
|
| 18 |
"whisper-vq-stoks-medium-en+pl-fixed.model"
|
| 19 |
).to(device)
|
|
|
|
| 29 |
llm_int8_has_fp16_weight=False,
|
| 30 |
)
|
| 31 |
else:
|
| 32 |
+
model_kwargs["torch_dtype"] = torch.float32
|
| 33 |
model = AutoModelForCausalLM.from_pretrained(llm_path, **model_kwargs).to(device)
|
| 34 |
|
|
|
|
| 35 |
def audio_to_sound_tokens_whisperspeech(audio_path):
|
| 36 |
+
vq_model.ensure_whisper(device)
|
| 37 |
wav, sr = torchaudio.load(audio_path)
|
| 38 |
if sr != 16000:
|
| 39 |
wav = torchaudio.functional.resample(wav, sr, 16000)
|
|
|
|
| 44 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 45 |
return f'<|sound_start|>{result}<|sound_end|>'
|
| 46 |
|
|
|
|
| 47 |
def audio_to_sound_tokens_whisperspeech_transcribe(audio_path):
|
| 48 |
+
vq_model.ensure_whisper(device)
|
| 49 |
wav, sr = torchaudio.load(audio_path)
|
| 50 |
if sr != 16000:
|
| 51 |
wav = torchaudio.functional.resample(wav, sr, 16000)
|
|
|
|
| 56 |
result = ''.join(f'<|sound_{num:04d}|>' for num in codes)
|
| 57 |
return f'<|reserved_special_token_69|><|sound_start|>{result}<|sound_end|>'
|
| 58 |
|
|
|
|
| 59 |
def text_to_audio_file(text):
|
| 60 |
id = str(uuid.uuid4())
|
| 61 |
temp_file = f"./user_audio/{id}_temp_audio.wav"
|
|
|
|
| 62 |
text_split = "_".join(text.lower().split(" "))
|
| 63 |
if text_split[-1] == ".":
|
| 64 |
text_split = text_split[:-1]
|
| 65 |
+
tts = TTSProcessor(device)
|
| 66 |
tts.convert_text_to_audio_file(text, temp_file)
|
| 67 |
print(f"Saved audio to {temp_file}")
|
| 68 |
return temp_file
|
| 69 |
|
| 70 |
+
def run_on_cpu(func):
|
| 71 |
+
def wrapper(*args, **kwargs):
|
| 72 |
+
return func(*args, **kwargs)
|
| 73 |
+
return wrapper
|
| 74 |
|
| 75 |
+
@run_on_cpu
|
| 76 |
def process_input(audio_file=None):
|
|
|
|
| 77 |
for partial_message in process_audio(audio_file):
|
| 78 |
yield partial_message
|
| 79 |
+
|
| 80 |
+
@run_on_cpu
|
|
|
|
| 81 |
def process_transcribe_input(audio_file=None):
|
|
|
|
| 82 |
for partial_message in process_audio(audio_file, transcript=True):
|
| 83 |
yield partial_message
|
| 84 |
+
|
| 85 |
class StopOnTokens(StoppingCriteria):
|
| 86 |
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
|
| 87 |
+
stop_ids = [tokenizer.eos_token_id, 128009]
|
|
|
|
| 88 |
for stop_id in stop_ids:
|
| 89 |
if input_ids[0][-1] == stop_id:
|
| 90 |
return True
|
| 91 |
return False
|
| 92 |
+
|
|
|
|
| 93 |
def process_audio(audio_file, transcript=False):
|
| 94 |
if audio_file is None:
|
| 95 |
+
raise ValueError("No audio file provided")
|
| 96 |
|
| 97 |
logging.info(f"Audio file received: {audio_file}")
|
| 98 |
logging.info(f"Audio file type: {type(audio_file)}")
|
| 99 |
|
| 100 |
+
sound_tokens = audio_to_sound_tokens_whisperspeech_transcribe(audio_file) if transcript else audio_to_sound_tokens_whisperspeech(audio_file)
|
| 101 |
logging.info("Sound tokens generated successfully")
|
| 102 |
+
|
| 103 |
messages = [
|
| 104 |
{"role": "user", "content": sound_tokens},
|
| 105 |
]
|
|
|
|
| 109 |
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
| 110 |
input_ids = input_ids.to(model.device)
|
| 111 |
|
| 112 |
+
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
|
| 113 |
generation_kwargs = dict(
|
| 114 |
input_ids=input_ids,
|
| 115 |
streamer=streamer,
|
|
|
|
| 128 |
break
|
| 129 |
partial_message = partial_message.replace("assistant\n\n", "")
|
| 130 |
yield partial_message
|
| 131 |
+
|
|
|
|
|
|
|
|
|
|
| 132 |
good_examples = []
|
| 133 |
for file in os.listdir("./examples"):
|
| 134 |
if file.endswith(".wav"):
|
|
|
|
| 140 |
examples = []
|
| 141 |
examples.extend(good_examples)
|
| 142 |
examples.extend(bad_examples)
|
| 143 |
+
|
| 144 |
with gr.Blocks() as iface:
|
| 145 |
gr.Markdown("# Llama3.1-S: checkpoint Aug 19, 2024")
|
| 146 |
gr.Markdown("Enter text to convert to audio, then submit the audio to generate text or Upload Audio")
|
|
|
|
| 150 |
input_type = gr.Radio(["text", "audio"], label="Input Type", value="audio")
|
| 151 |
text_input = gr.Textbox(label="Text Input", visible=False)
|
| 152 |
audio_input = gr.Audio(label="Audio", type="filepath", visible=True)
|
| 153 |
+
|
|
|
|
| 154 |
convert_button = gr.Button("Make synthetic audio", visible=False)
|
| 155 |
submit_button = gr.Button("Chat with AI using audio")
|
| 156 |
transcrip_button = gr.Button("Make Model transcribe the audio")
|
|
|
|
| 160 |
def update_visibility(input_type):
|
| 161 |
return (gr.update(visible=input_type == "text"),
|
| 162 |
gr.update(visible=input_type == "text"))
|
| 163 |
+
|
| 164 |
def convert_and_display(text):
|
| 165 |
audio_file = text_to_audio_file(text)
|
| 166 |
return audio_file
|
| 167 |
+
|
|
|
|
| 168 |
input_type.change(
|
| 169 |
update_visibility,
|
| 170 |
inputs=[input_type],
|
|
|
|
| 189 |
)
|
| 190 |
|
| 191 |
gr.Examples(examples, inputs=[audio_input])
|
| 192 |
+
|
| 193 |
iface.queue()
|
| 194 |
+
iface.launch()
|
|
|
|
|
|