Spaces:
Sleeping
Sleeping
| import sys,os | |
| sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
| import torch | |
| import argparse | |
| from omegaconf import OmegaConf | |
| from scipy.io.wavfile import write | |
| from bigvgan.model.generator import Generator | |
| from pitch import load_csv_pitch | |
| def load_bigv_model(checkpoint_path, model): | |
| assert os.path.isfile(checkpoint_path) | |
| checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") | |
| saved_state_dict = checkpoint_dict["model_g"] | |
| state_dict = model.state_dict() | |
| new_state_dict = {} | |
| for k, v in state_dict.items(): | |
| try: | |
| new_state_dict[k] = saved_state_dict[k] | |
| except: | |
| print("%s is not in the checkpoint" % k) | |
| new_state_dict[k] = v | |
| model.load_state_dict(new_state_dict) | |
| return model | |
| def main(args): | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| hp = OmegaConf.load(args.config) | |
| model = Generator(hp) | |
| load_bigv_model(args.model, model) | |
| model.eval() | |
| model.to(device) | |
| mel = torch.load(args.mel) | |
| pit = load_csv_pitch(args.pit) | |
| pit = torch.FloatTensor(pit) | |
| len_pit = pit.size()[0] | |
| len_mel = mel.size()[1] | |
| len_min = min(len_pit, len_mel) | |
| pit = pit[:len_min] | |
| mel = mel[:, :len_min] | |
| with torch.no_grad(): | |
| mel = mel.unsqueeze(0).to(device) | |
| pit = pit.unsqueeze(0).to(device) | |
| audio = model.inference(mel, pit) | |
| audio = audio.cpu().detach().numpy() | |
| pitwav = model.pitch2wav(pit) | |
| pitwav = pitwav.cpu().detach().numpy() | |
| write("gvc_out.wav", hp.audio.sampling_rate, audio) | |
| write("gvc_pitch.wav", hp.audio.sampling_rate, pitwav) | |
| if __name__ == '__main__': | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument('--mel', type=str, | |
| help="Path of content vector.") | |
| parser.add_argument('--pit', type=str, | |
| help="Path of pitch csv file.") | |
| args = parser.parse_args() | |
| args.config = "./bigvgan/configs/nsf_bigvgan.yaml" | |
| args.model = "./bigvgan_pretrain/nsf_bigvgan_pretrain_32K.pth" | |
| main(args) | |