File size: 5,441 Bytes
9dfb240
 
005b064
 
 
 
 
 
 
 
 
 
 
9dfb240
005b064
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9dfb240
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import gradio as gr


with gr.Blocks(fill_height=True, css=".gradio-container {background-color: #f0f4f8;}") as demo:
    gr.Markdown(
        """
        <style>
            .sidebar {background-color: #ffffff; border-right: 1px solid #e0e0e0; padding: 20px;}
            .main-content {padding: 20px;}
            .gr-button {border-radius: 8px; font-weight: bold;}
        </style>
        """
    )
    
    with gr.Row():
        with gr.Column(scale=1, variant="panel", elem_classes="sidebar"):
            gr.Markdown("# Inference Provider")
            gr.Markdown("This Space showcases the openai/gpt-oss-20b model, served by the ultra-fast Groq API. Sign in with your Hugging Face account to access premium features.")
            button = gr.LoginButton("Sign in with Hugging Face")
            
            # Advanced feature: Model info accordion
            with gr.Accordion("Model Details", open=False):
                gr.Markdown("""
                - **Model**: openai/gpt-oss-20b
                - **Provider**: Groq API (low-latency inference)
                - **Capabilities**: Natural language generation, conversation, code assistance
                - **Max Tokens**: Up to 4096
                """)
            
            # Advanced feature: Quick links
            gr.Markdown("### Quick Links")
            gr.HTML('<a href="https://groq.com" target="_blank">Groq Website</a>')
            gr.HTML('<a href="https://huggingface.co" target="_blank">Hugging Face</a>')
        
        with gr.Column(scale=4, elem_classes="main-content"):
            # Load the model interface with authentication
            model_interface = gr.load("models/openai/gpt-oss-20b", accept_token=button, provider="groq")
            
            # Advanced feature: Wrap in Tabs for multi-view
            with gr.Tabs():
                with gr.Tab("Chat Mode"):
                    # Assuming gr.load provides a chat-like interface, but enhance with custom chatbot if needed
                    gr.Markdown("## Interactive Chat")
                    chatbot = gr.Chatbot(height=500, show_label=False)
                    msg = gr.Textbox(placeholder="Type your message here...", show_label=False)
                    with gr.Row():
                        submit_btn = gr.Button("Send", variant="primary")
                        clear_btn = gr.Button("Clear Chat")
                    
                    # Advanced feature: Parameters for fine-tuning responses
                    with gr.Accordion("Advanced Settings", open=False):
                        temperature = gr.Slider(0, 2, value=1, step=0.1, label="Temperature (creativity)")
                        max_tokens = gr.Slider(50, 2048, value=512, step=50, label="Max Tokens")
                        system_prompt = gr.Textbox("You are a helpful AI assistant.", label="System Prompt")
                    
                    # Examples for quick start
                    examples = gr.Examples(
                        examples=[
                            "Explain quantum computing in simple terms.",
                            "Write a Python function to calculate Fibonacci numbers.",
                            "Tell me a joke about programming."
                        ],
                        inputs=msg
                    )
                    
                    # Event handlers (simplified; assume integration with model)
                    # Note: In a real setup, you'd connect these to a custom predict function using Groq API
                    def chat_handler(message, history, temp, max_t, sys_prompt):
                        # Placeholder: Integrate with Groq API call here
                        response = f"Echo: {message} (temp={temp}, max={max_t}, sys={sys_prompt})"
                        history.append((message, response))
                        return "", history
                    
                    submit_btn.click(
                        chat_handler,
                        inputs=[msg, chatbot, temperature, max_tokens, system_prompt],
                        outputs=[msg, chatbot]
                    )
                    clear_btn.click(lambda: None, None, chatbot)
                    msg.submit(
                        chat_handler,
                        inputs=[msg, chatbot, temperature, max_tokens, system_prompt],
                        outputs=[msg, chatbot]
                    )
                
                with gr.Tab("API Playground"):
                    gr.Markdown("## Test API Endpoints")
                    input_text = gr.TextArea(placeholder="Enter your prompt here...")
                    output_text = gr.TextArea(label="Response")
                    generate_btn = gr.Button("Generate")
                    
                    # Placeholder for API call
                    def generate(prompt):
                        return f"Generated response for: {prompt}"
                    
                    generate_btn.click(generate, input_text, output_text)
                
                with gr.Tab("Documentation"):
                    gr.Markdown("""
                    # Usage Guide
                    - Log in to access the model.
                    - Use the chat for conversations.
                    - Adjust parameters for customized responses.
                    - Explore the API playground for direct testing.
                    """)

demo.launch()