Spaces:
Running
Running
V2
Browse files
app.py
CHANGED
|
@@ -20,15 +20,38 @@ from pedalboard.io import AudioFile
|
|
| 20 |
from pydub import AudioSegment
|
| 21 |
import noisereduce as nr
|
| 22 |
import edge_tts
|
| 23 |
-
from huggingface_hub import hf_hub_download, HfApi
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
# Theme
|
| 32 |
title = "<center><strong><font size='7'>🔊 RVC+</font></strong></center>"
|
| 33 |
description = """
|
| 34 |
<div style="text-align: center; font-size: 1.1em; color: #aaa; margin: 10px 0;">
|
|
@@ -37,253 +60,458 @@ Misuse of voice conversion technology is unethical. Use responsibly.<br>
|
|
| 37 |
Authors are not liable for inappropriate usage.
|
| 38 |
</div>
|
| 39 |
"""
|
| 40 |
-
theme = "Thatguy099/Sonix" # Maintained as requested
|
| 41 |
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
def
|
| 56 |
-
|
| 57 |
-
for
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
if not
|
| 102 |
-
raise ValueError(
|
| 103 |
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
if not url_data.strip():
|
| 130 |
-
raise ValueError("❌ No URL provided.")
|
| 131 |
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
|
| 140 |
-
|
| 141 |
-
directory = os.path.join(DOWNLOAD_DIR, folder_name)
|
| 142 |
-
os.makedirs(directory, exist_ok=True)
|
| 143 |
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
path_parts = parsed_url.path.strip("/").split("/")
|
| 151 |
-
if len(path_parts) < 4:
|
| 152 |
-
raise ValueError("❌ Invalid Hugging Face URL structure.")
|
| 153 |
-
repo_id = f"{path_parts[0]}/{path_parts[1]}"
|
| 154 |
-
revision = "main"
|
| 155 |
-
if "resolve" in path_parts:
|
| 156 |
-
resolve_idx = path_parts.index("resolve")
|
| 157 |
-
if resolve_idx + 1 < len(path_parts):
|
| 158 |
-
revision = path_parts[resolve_idx + 1]
|
| 159 |
-
filename = "/".join(path_parts[resolve_idx + 2:])
|
| 160 |
else:
|
| 161 |
-
|
| 162 |
-
filename = path_parts[-1]
|
| 163 |
-
# Download the file
|
| 164 |
-
local_path = hf_hub_download(
|
| 165 |
-
repo_id=repo_id,
|
| 166 |
-
filename=filename,
|
| 167 |
-
revision=revision,
|
| 168 |
-
cache_dir=directory,
|
| 169 |
-
local_dir=directory,
|
| 170 |
-
local_dir_use_symlinks=False
|
| 171 |
-
)
|
| 172 |
-
downloaded_files.append(local_path)
|
| 173 |
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
| 177 |
|
| 178 |
-
|
| 179 |
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
|
| 193 |
-
except Exception as e:
|
| 194 |
-
shutil.rmtree(directory, ignore_errors=True)
|
| 195 |
-
raise gr.Error(f"❌ Download failed: {str(e)}")
|
| 196 |
-
|
| 197 |
-
# --- Audio Processing ---
|
| 198 |
-
def apply_noisereduce(audio_paths):
|
| 199 |
-
results = []
|
| 200 |
-
for path in audio_paths:
|
| 201 |
-
out_path = f"{os.path.splitext(path)[0]}_denoised.wav"
|
| 202 |
try:
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
reduced_audio = AudioSegment(
|
| 208 |
-
reduced.tobytes(),
|
| 209 |
-
frame_rate=sr,
|
| 210 |
-
sample_width=audio.sample_width,
|
| 211 |
-
channels=audio.channels
|
| 212 |
-
)
|
| 213 |
-
reduced_audio.export(out_path, format="wav")
|
| 214 |
-
results.append(out_path)
|
| 215 |
-
gr.Info("🔊 Noise reduction applied.")
|
| 216 |
except Exception as e:
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
def
|
| 222 |
-
|
| 223 |
-
board = Pedalboard([
|
| 224 |
-
HighpassFilter(cutoff_frequency_hz=80),
|
| 225 |
-
Compressor(ratio=4, threshold_db=-15),
|
| 226 |
-
Reverb(room_size=0.15, damping=0.7, wet_level=0.15, dry_level=0.85)
|
| 227 |
-
])
|
| 228 |
-
for path in audio_paths:
|
| 229 |
-
out_path = f"{os.path.splitext(path)[0]}_reverb.wav"
|
| 230 |
try:
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
chunk = f.read(int(f.samplerate))
|
| 235 |
-
effected = board(chunk, f.samplerate)
|
| 236 |
-
o.write(effected)
|
| 237 |
-
results.append(out_path)
|
| 238 |
-
gr.Info("🎛️ Audio effects applied.")
|
| 239 |
except Exception as e:
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
return results
|
| 243 |
-
|
| 244 |
-
# --- TTS Handler ---
|
| 245 |
-
async def generate_tts(text, voice, output_path):
|
| 246 |
-
communicate = edge_tts.Communicate(text, voice.split("-")[0])
|
| 247 |
-
await communicate.save(output_path)
|
| 248 |
-
|
| 249 |
-
def infer_tts(tts_voice, tts_text, play_tts):
|
| 250 |
-
if not tts_text.strip():
|
| 251 |
-
raise ValueError("❌ Text is empty.")
|
| 252 |
-
folder = f"tts_{random.randint(10000, 99999)}"
|
| 253 |
-
out_dir = os.path.join(OUTPUT_DIR, folder)
|
| 254 |
-
os.makedirs(out_dir, exist_ok=True)
|
| 255 |
-
out_path = os.path.join(out_dir, "tts_output.mp3")
|
| 256 |
-
|
| 257 |
-
try:
|
| 258 |
-
asyncio.run(generate_tts(tts_text, tts_voice, out_path))
|
| 259 |
-
if play_tts:
|
| 260 |
-
return [out_path], out_path
|
| 261 |
-
return [out_path], None
|
| 262 |
-
except Exception as e:
|
| 263 |
-
raise gr.Error(f"TTS generation failed: {str(e)}")
|
| 264 |
|
| 265 |
-
#
|
| 266 |
@spaces.GPU()
|
| 267 |
def run_conversion(
|
| 268 |
-
audio_files,
|
| 269 |
-
model_path,
|
| 270 |
-
pitch_algo,
|
| 271 |
-
pitch_level,
|
| 272 |
-
index_path,
|
| 273 |
-
index_rate,
|
| 274 |
-
filter_radius,
|
| 275 |
-
rms_mix_rate,
|
| 276 |
-
protect,
|
| 277 |
-
denoise,
|
| 278 |
-
effects,
|
| 279 |
-
|
|
|
|
|
|
|
| 280 |
if not audio_files:
|
| 281 |
raise ValueError("❌ Please upload at least one audio file.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 282 |
|
| 283 |
random_tag = f"USER_{random.randint(10000000, 99999999)}"
|
| 284 |
|
| 285 |
# Configure converter
|
| 286 |
-
converter.apply_conf(
|
| 287 |
tag=random_tag,
|
| 288 |
file_model=model_path,
|
| 289 |
pitch_algo=pitch_algo,
|
|
@@ -298,21 +526,26 @@ def run_conversion(
|
|
| 298 |
|
| 299 |
# Run conversion
|
| 300 |
try:
|
| 301 |
-
results = converter(audio_files, random_tag, overwrite=False, parallel_workers=8)
|
| 302 |
except Exception as e:
|
|
|
|
| 303 |
raise gr.Error(f"❌ Conversion failed: {str(e)}")
|
| 304 |
|
| 305 |
# Post-processing
|
| 306 |
if denoise:
|
| 307 |
-
results = apply_noisereduce(results)
|
| 308 |
if effects:
|
| 309 |
-
results = apply_audio_effects(results)
|
| 310 |
|
| 311 |
return results
|
| 312 |
|
| 313 |
-
#
|
| 314 |
def create_ui():
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
gr.HTML(title)
|
| 317 |
gr.HTML(description)
|
| 318 |
|
|
@@ -323,7 +556,7 @@ def create_ui():
|
|
| 323 |
with gr.Column(scale=1):
|
| 324 |
gr.Markdown("### 🔊 Upload Audio")
|
| 325 |
audio_input = gr.File(
|
| 326 |
-
label="Audio Files (WAV, MP3, OGG)",
|
| 327 |
file_count="multiple",
|
| 328 |
type="filepath"
|
| 329 |
)
|
|
@@ -332,6 +565,19 @@ def create_ui():
|
|
| 332 |
model_file = gr.File(label="Upload .pth Model", type="filepath")
|
| 333 |
index_file = gr.File(label="Upload .index File (Optional)", type="filepath")
|
| 334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
use_url = gr.Checkbox(label="🌐 Download from Hugging Face URL", value=False)
|
| 336 |
|
| 337 |
with gr.Group(visible=False) as url_group:
|
|
@@ -354,12 +600,15 @@ def create_ui():
|
|
| 354 |
)
|
| 355 |
|
| 356 |
download_btn.click(
|
| 357 |
-
download_model,
|
| 358 |
inputs=[model_url],
|
| 359 |
outputs=[model_file, index_file]
|
| 360 |
).then(
|
| 361 |
-
lambda: gr.update(visible=False),
|
| 362 |
outputs=[url_group]
|
|
|
|
|
|
|
|
|
|
| 363 |
)
|
| 364 |
|
| 365 |
with gr.Column(scale=1):
|
|
@@ -376,9 +625,24 @@ def create_ui():
|
|
| 376 |
|
| 377 |
denoise = gr.Checkbox(False, label="🔇 Denoise Output")
|
| 378 |
reverb = gr.Checkbox(False, label="🎛️ Add Reverb")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 379 |
|
| 380 |
convert_btn = gr.Button("🚀 Convert Voice", variant="primary", size="lg")
|
| 381 |
output_files = gr.File(label="✅ Converted Audio", file_count="multiple")
|
|
|
|
|
|
|
|
|
|
| 382 |
|
| 383 |
convert_btn.click(
|
| 384 |
run_conversion,
|
|
@@ -394,6 +658,7 @@ def create_ui():
|
|
| 394 |
protect,
|
| 395 |
denoise,
|
| 396 |
reverb,
|
|
|
|
| 397 |
],
|
| 398 |
outputs=output_files,
|
| 399 |
)
|
|
@@ -402,13 +667,8 @@ def create_ui():
|
|
| 402 |
with gr.Tab("🗣️ Text-to-Speech", id=1):
|
| 403 |
gr.Markdown("### Convert text to speech using Edge TTS.")
|
| 404 |
|
| 405 |
-
#
|
| 406 |
-
|
| 407 |
-
tts_voice_list = sorted(
|
| 408 |
-
[f"{v['ShortName']}-{v['Gender']}" for v in asyncio.run(edge_tts.list_voices())]
|
| 409 |
-
)
|
| 410 |
-
except:
|
| 411 |
-
tts_voice_list = ["en-US-JennyNeural-Female"] # Fallback
|
| 412 |
|
| 413 |
with gr.Row():
|
| 414 |
with gr.Column(scale=1):
|
|
@@ -417,7 +677,11 @@ def create_ui():
|
|
| 417 |
label="Text Input",
|
| 418 |
lines=5
|
| 419 |
)
|
| 420 |
-
tts_voice = gr.Dropdown(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
tts_play = gr.Checkbox(False, label="🎧 Auto-play audio")
|
| 422 |
tts_btn = gr.Button("🔊 Generate Speech", variant="secondary")
|
| 423 |
|
|
@@ -426,7 +690,7 @@ def create_ui():
|
|
| 426 |
tts_preview = gr.Audio(label="Preview", visible=False, autoplay=True)
|
| 427 |
|
| 428 |
tts_btn.click(
|
| 429 |
-
infer_tts,
|
| 430 |
inputs=[tts_voice, tts_text, tts_play],
|
| 431 |
outputs=[tts_output_audio, tts_preview],
|
| 432 |
).then(
|
|
@@ -434,8 +698,43 @@ def create_ui():
|
|
| 434 |
inputs=[tts_preview],
|
| 435 |
outputs=[tts_preview]
|
| 436 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 437 |
|
| 438 |
-
# Examples
|
| 439 |
gr.Markdown("### 📚 Examples")
|
| 440 |
gr.Examples(
|
| 441 |
examples=[
|
|
@@ -447,13 +746,13 @@ def create_ui():
|
|
| 447 |
index_rate, filter_radius, rms_mix_rate, protect, denoise, reverb
|
| 448 |
],
|
| 449 |
outputs=output_files,
|
| 450 |
-
fn=run_conversion,
|
| 451 |
cache_examples=False,
|
| 452 |
)
|
| 453 |
|
| 454 |
return app
|
| 455 |
|
| 456 |
-
#
|
| 457 |
if __name__ == "__main__":
|
| 458 |
app = create_ui()
|
| 459 |
app.queue(default_concurrency_limit=10)
|
|
|
|
| 20 |
from pydub import AudioSegment
|
| 21 |
import noisereduce as nr
|
| 22 |
import edge_tts
|
| 23 |
+
from huggingface_hub import hf_hub_download, HfApi
|
| 24 |
+
from typing import List, Tuple, Optional, Dict, Any
|
| 25 |
+
import json
|
| 26 |
+
from pathlib import Path
|
| 27 |
+
|
| 28 |
+
# Configure logging
|
| 29 |
+
logging.basicConfig(
|
| 30 |
+
level=logging.INFO,
|
| 31 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 32 |
+
handlers=[
|
| 33 |
+
logging.FileHandler("rvc_app.log"),
|
| 34 |
+
logging.StreamHandler()
|
| 35 |
+
]
|
| 36 |
+
)
|
| 37 |
+
logger = logging.getLogger("RVC_APP")
|
| 38 |
+
|
| 39 |
+
# Suppress third-party logging
|
| 40 |
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)
|
| 41 |
|
| 42 |
+
# Constants
|
| 43 |
+
PITCH_ALGO_OPT = ["pm", "harvest", "crepe", "rmvpe", "rmvpe+"]
|
| 44 |
+
MAX_FILE_SIZE = 500 * 1024 * 1024 # 500 MB
|
| 45 |
+
DOWNLOAD_DIR = "downloads"
|
| 46 |
+
OUTPUT_DIR = "output"
|
| 47 |
+
CONFIG_FILE = "rvc_config.json"
|
| 48 |
+
SUPPORTED_AUDIO_FORMATS = [".wav", ".mp3", ".ogg", ".flac", ".m4a"]
|
| 49 |
+
|
| 50 |
+
# Create necessary directories
|
| 51 |
+
os.makedirs(DOWNLOAD_DIR, exist_ok=True)
|
| 52 |
+
os.makedirs(OUTPUT_DIR, exist_ok=True)
|
| 53 |
|
| 54 |
+
# Theme and UI Configuration
|
| 55 |
title = "<center><strong><font size='7'>🔊 RVC+</font></strong></center>"
|
| 56 |
description = """
|
| 57 |
<div style="text-align: center; font-size: 1.1em; color: #aaa; margin: 10px 0;">
|
|
|
|
| 60 |
Authors are not liable for inappropriate usage.
|
| 61 |
</div>
|
| 62 |
"""
|
|
|
|
| 63 |
|
| 64 |
+
# Theme definition (keeping your existing theme code)
|
| 65 |
+
from gradio.themes import Soft
|
| 66 |
+
from gradio.themes.utils import colors, fonts, sizes
|
| 67 |
+
|
| 68 |
+
# Define the new OrangeRed color palette
|
| 69 |
+
colors.orange_red = colors.Color(
|
| 70 |
+
name="orange_red",
|
| 71 |
+
c50="#FFF0E5",
|
| 72 |
+
c100="#FFE0CC",
|
| 73 |
+
c200="#FFC299",
|
| 74 |
+
c300="#FFA366",
|
| 75 |
+
c400="#FF8533",
|
| 76 |
+
c500="#FF4500", # OrangeRed base color
|
| 77 |
+
c600="#E63E00",
|
| 78 |
+
c700="#CC3700",
|
| 79 |
+
c800="#B33000",
|
| 80 |
+
c900="#992900",
|
| 81 |
+
c950="#802200",
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
class OrangeRedTheme(Soft):
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
*,
|
| 88 |
+
primary_hue: colors.Color | str = colors.gray,
|
| 89 |
+
secondary_hue: colors.Color | str = colors.orange_red,
|
| 90 |
+
neutral_hue: colors.Color | str = colors.slate,
|
| 91 |
+
text_size: sizes.Size | str = sizes.text_lg,
|
| 92 |
+
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 93 |
+
fonts.GoogleFont("Outfit"), "Arial", "sans-serif",
|
| 94 |
+
),
|
| 95 |
+
font_mono: fonts.Font | str | Iterable[fonts.Font | str] = (
|
| 96 |
+
fonts.GoogleFont("IBM Plex Mono"), "ui-monospace", "monospace",
|
| 97 |
+
),
|
| 98 |
+
):
|
| 99 |
+
super().__init__(
|
| 100 |
+
primary_hue=primary_hue,
|
| 101 |
+
secondary_hue=secondary_hue,
|
| 102 |
+
neutral_hue=neutral_hue,
|
| 103 |
+
text_size=text_size,
|
| 104 |
+
font=font,
|
| 105 |
+
font_mono=font_mono,
|
| 106 |
+
)
|
| 107 |
+
super().set(
|
| 108 |
+
background_fill_primary="*primary_50",
|
| 109 |
+
background_fill_primary_dark="*primary_900",
|
| 110 |
+
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 111 |
+
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 112 |
+
button_primary_text_color="white",
|
| 113 |
+
button_primary_text_color_hover="white",
|
| 114 |
+
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 115 |
+
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 116 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 117 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 118 |
+
button_secondary_text_color="black",
|
| 119 |
+
button_secondary_text_color_hover="white",
|
| 120 |
+
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 121 |
+
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 122 |
+
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 123 |
+
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 124 |
+
slider_color="*secondary_500",
|
| 125 |
+
slider_color_dark="*secondary_600",
|
| 126 |
+
block_title_text_weight="600",
|
| 127 |
+
block_border_width="3px",
|
| 128 |
+
block_shadow="*shadow_drop_lg",
|
| 129 |
+
button_primary_shadow="*shadow_drop_lg",
|
| 130 |
+
button_large_padding="11px",
|
| 131 |
+
color_accent_soft="*primary_100",
|
| 132 |
+
block_label_background_fill="*primary_200",
|
| 133 |
+
)
|
| 134 |
|
| 135 |
+
# Instantiate the theme
|
| 136 |
+
orange_red_theme = OrangeRedTheme()
|
| 137 |
+
|
| 138 |
+
# CSS (keeping your existing CSS)
|
| 139 |
+
css = """
|
| 140 |
+
#main-title h1 {
|
| 141 |
+
font-size: 2.3em !important;
|
| 142 |
+
}
|
| 143 |
+
#output-title h2 {
|
| 144 |
+
font-size: 2.1em !important;
|
| 145 |
+
}
|
| 146 |
+
:root {
|
| 147 |
+
--color-grey-50: #f9fafb;
|
| 148 |
+
--banner-background: var(--secondary-400);
|
| 149 |
+
--banner-text-color: var(--primary-100);
|
| 150 |
+
--banner-background-dark: var(--secondary-800);
|
| 151 |
+
--banner-text-color-dark: var(--primary-100);
|
| 152 |
+
--banner-chrome-height: calc(16px + 43px);
|
| 153 |
+
--chat-chrome-height-wide-no-banner: 320px;
|
| 154 |
+
--chat-chrome-height-narrow-no-banner: 450px;
|
| 155 |
+
--chat-chrome-height-wide: calc(var(--chat-chrome-height-wide-no-banner) + var(--banner-chrome-height));
|
| 156 |
+
--chat-chrome-height-narrow: calc(var(--chat-chrome-height-narrow-no-banner) + var(--banner-chrome-height));
|
| 157 |
+
}
|
| 158 |
+
.banner-message { background-color: var(--banner-background); padding: 5px; margin: 0; border-radius: 5px; border: none; }
|
| 159 |
+
.banner-message-text { font-size: 13px; font-weight: bolder; color: var(--banner-text-color) !important; }
|
| 160 |
+
body.dark .banner-message { background-color: var(--banner-background-dark) !important; }
|
| 161 |
+
body.dark .gradio-container .contain .banner-message .banner-message-text { color: var(--banner-text-color-dark) !important; }
|
| 162 |
+
.toast-body { background-color: var(--color-grey-50); }
|
| 163 |
+
.html-container:has(.css-styles) { padding: 0; margin: 0; }
|
| 164 |
+
.css-styles { height: 0; }
|
| 165 |
+
.model-message { text-align: end; }
|
| 166 |
+
.model-dropdown-container { display: flex; align-items: center; gap: 10px; padding: 0; }
|
| 167 |
+
.user-input-container .multimodal-textbox{ border: none !important; }
|
| 168 |
+
.control-button { height: 51px; }
|
| 169 |
+
button.cancel { border: var(--button-border-width) solid var(--button-cancel-border-color); background: var(--button-cancel-background-fill); color: var(--button-cancel-text-color); box-shadow: var(--button-cancel-shadow); }
|
| 170 |
+
button.cancel:hover, .cancel[disabled] { background: var(--button-cancel-background-fill-hover); color: var(--button-cancel-text-color-hover); }
|
| 171 |
+
.opt-out-message { top: 8px; }
|
| 172 |
+
.opt-out-message .html-container, .opt-out-checkbox label { font-size: 14px !important; padding: 0 !important; margin: 0 !important; color: var(--neutral-400) !important; }
|
| 173 |
+
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; max-height: 900px !important; }
|
| 174 |
+
div.no-padding { padding: 0 !important; }
|
| 175 |
+
@media (max-width: 1280px) { div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-wide)) !important; } }
|
| 176 |
+
@media (max-width: 1024px) {
|
| 177 |
+
.responsive-row { flex-direction: column; }
|
| 178 |
+
.model-message { text-align: start; font-size: 10px !important; }
|
| 179 |
+
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 180 |
+
div.block.chatbot { height: calc(100svh - var(--chat-chrome-height-narrow)) !important; }
|
| 181 |
+
}
|
| 182 |
+
@media (max-width: 400px) {
|
| 183 |
+
.responsive-row { flex-direction: column; }
|
| 184 |
+
.model-message { text-align: start; font-size: 10px !important; }
|
| 185 |
+
.model-dropdown-container { flex-direction: column; align-items: flex-start; }
|
| 186 |
+
div.block.chatbot { max-height: 360px !important; }
|
| 187 |
+
}
|
| 188 |
+
@media (max-height: 932px) { .chatbot { max-height: 500px !important; } }
|
| 189 |
+
@media (max-height: 1280px) { div.block.chatbot { max-height: 800px !important; } }
|
| 190 |
+
"""
|
| 191 |
|
| 192 |
+
# Model Management Class
|
| 193 |
+
class ModelManager:
|
| 194 |
+
"""Manages model loading, downloading, and caching."""
|
| 195 |
+
|
| 196 |
+
def __init__(self):
|
| 197 |
+
self.converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
|
| 198 |
+
self.loaded_models = {} # Cache for loaded models
|
| 199 |
+
self.config = self._load_config()
|
| 200 |
+
|
| 201 |
+
def _load_config(self) -> Dict[str, Any]:
|
| 202 |
+
"""Load configuration from file if exists."""
|
| 203 |
+
if os.path.exists(CONFIG_FILE):
|
| 204 |
+
try:
|
| 205 |
+
with open(CONFIG_FILE, 'r') as f:
|
| 206 |
+
return json.load(f)
|
| 207 |
+
except Exception as e:
|
| 208 |
+
logger.error(f"Failed to load config: {e}")
|
| 209 |
+
return {"recent_models": [], "default_settings": {}}
|
| 210 |
+
|
| 211 |
+
def save_config(self):
|
| 212 |
+
"""Save current configuration to file."""
|
| 213 |
+
try:
|
| 214 |
+
with open(CONFIG_FILE, 'w') as f:
|
| 215 |
+
json.dump(self.config, f)
|
| 216 |
+
except Exception as e:
|
| 217 |
+
logger.error(f"Failed to save config: {e}")
|
| 218 |
+
|
| 219 |
+
def add_recent_model(self, model_path: str):
|
| 220 |
+
"""Add a model to recent models list."""
|
| 221 |
+
if model_path not in self.config["recent_models"]:
|
| 222 |
+
self.config["recent_models"].append(model_path)
|
| 223 |
+
# Keep only the 5 most recent models
|
| 224 |
+
self.config["recent_models"] = self.config["recent_models"][-5:]
|
| 225 |
+
self.save_config()
|
| 226 |
+
|
| 227 |
+
def find_files(self, directory: str, exts: Tuple[str] = (".pth", ".index", ".zip")) -> List[str]:
|
| 228 |
+
"""Find files with specific extensions in a directory."""
|
| 229 |
+
return [os.path.join(directory, f) for f in os.listdir(directory) if f.endswith(exts)]
|
| 230 |
+
|
| 231 |
+
def unzip_in_folder(self, zip_path: str, extract_to: str):
|
| 232 |
+
"""Unzip a file to a specific folder."""
|
| 233 |
+
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
|
| 234 |
+
for member in zip_ref.infolist():
|
| 235 |
+
if not member.is_dir():
|
| 236 |
+
# Preserve filename, avoid path traversal
|
| 237 |
+
member.filename = os.path.basename(member.filename)
|
| 238 |
+
zip_ref.extract(member, extract_to)
|
| 239 |
+
|
| 240 |
+
def get_file_size(self, url: str) -> int:
|
| 241 |
+
"""Check file size for Hugging Face URLs."""
|
| 242 |
+
if "huggingface" not in url.lower():
|
| 243 |
+
raise ValueError("❌ Only Hugging Face links are allowed.")
|
| 244 |
|
| 245 |
+
try:
|
| 246 |
+
api = HfApi()
|
| 247 |
+
# Extract repo_id and filename from the URL
|
| 248 |
+
if "/resolve/main/" in url:
|
| 249 |
+
parts = url.split("/resolve/main/")
|
| 250 |
+
elif "/resolve/" in url:
|
| 251 |
+
# Handle specific branches
|
| 252 |
+
parts = url.split("/resolve/")
|
| 253 |
+
parts[1] = parts[1].split("/", 1)[1] # Remove branch name
|
| 254 |
+
else:
|
| 255 |
+
# Assume it's a blob link or direct file link
|
| 256 |
+
parts = url.rstrip("/").rsplit("/", 2)
|
| 257 |
+
if len(parts) == 3:
|
| 258 |
+
repo_parts = "/".join(parts[0].split("/")[-2:])
|
| 259 |
+
filename = parts[2]
|
| 260 |
+
repo_id = f"{parts[0].split('/')[-2]}/{parts[0].split('/')[-1]}"
|
| 261 |
+
file_info = api.repo_info(repo_id=repo_id, repo_type="model")
|
| 262 |
+
file_entry = next((f for f in file_info.siblings if f.rfilename == filename), None)
|
| 263 |
+
if not file_entry:
|
| 264 |
+
raise ValueError(f"❌ File '{filename}' not found in repository '{repo_id}'.")
|
| 265 |
+
file_size = file_entry.size
|
| 266 |
+
if file_size > MAX_FILE_SIZE:
|
| 267 |
+
raise ValueError(f"⚠️ File too large: {file_size / 1e6:.1f} MB (>500MB)")
|
| 268 |
+
return file_size
|
| 269 |
+
else:
|
| 270 |
+
raise ValueError("❌ Unable to parse Hugging Face URL.")
|
| 271 |
+
|
| 272 |
+
repo_parts = parts[0].split("/")[-2:]
|
| 273 |
+
repo_id = f"{repo_parts[0]}/{repo_parts[1]}"
|
| 274 |
+
filename = parts[1]
|
| 275 |
+
|
| 276 |
+
file_info = api.repo_info(repo_id=repo_id, repo_type="model")
|
| 277 |
+
file_entry = next((f for f in file_info.siblings if f.rfilename == filename), None)
|
| 278 |
+
if not file_entry:
|
| 279 |
+
raise ValueError(f"❌ File '{filename}' not found in repository '{repo_id}'.")
|
| 280 |
+
|
| 281 |
+
file_size = file_entry.size
|
| 282 |
+
if file_size > MAX_FILE_SIZE:
|
| 283 |
+
raise ValueError(f"⚠️ File too large: {file_size / 1e6:.1f} MB (>500MB)")
|
| 284 |
+
return file_size
|
| 285 |
+
except Exception as e:
|
| 286 |
+
raise RuntimeError(f"❌ Failed to fetch file info: {str(e)}")
|
| 287 |
+
|
| 288 |
+
def clear_directory_later(self, directory: str, delay: int = 30):
|
| 289 |
+
"""Clear temp directory after delay in a background thread."""
|
| 290 |
+
def _clear():
|
| 291 |
+
time.sleep(delay)
|
| 292 |
+
if os.path.exists(directory):
|
| 293 |
+
shutil.rmtree(directory, ignore_errors=True)
|
| 294 |
+
logger.info(f"🧹 Cleaned up: {directory}")
|
| 295 |
+
threading.Thread(target=_clear, daemon=True).start()
|
| 296 |
+
|
| 297 |
+
def find_model_and_index(self, directory: str) -> Tuple[Optional[str], Optional[str]]:
|
| 298 |
+
"""Find model and index files in a directory."""
|
| 299 |
+
files = self.find_files(directory)
|
| 300 |
+
model = next((f for f in files if f.endswith(".pth")), None)
|
| 301 |
+
index = next((f for f in files if f.endswith(".index")), None)
|
| 302 |
+
return model, index
|
| 303 |
+
|
| 304 |
+
@spaces.GPU(duration=60)
|
| 305 |
+
def download_model(self, url_data: str) -> Tuple[str, Optional[str]]:
|
| 306 |
+
"""Download model from Hugging Face URL."""
|
| 307 |
+
if not url_data.strip():
|
| 308 |
+
raise ValueError("❌ No URL provided.")
|
| 309 |
+
|
| 310 |
+
urls = [u.strip() for u in url_data.split(",") if u.strip()]
|
| 311 |
+
if len(urls) > 2:
|
| 312 |
+
raise ValueError("❌ Provide up to two URLs (model.pth, index.index).")
|
| 313 |
+
|
| 314 |
+
# Validate size first
|
| 315 |
+
for url in urls:
|
| 316 |
+
self.get_file_size(url)
|
| 317 |
|
| 318 |
+
folder_name = f"model_{random.randint(1000, 9999)}"
|
| 319 |
+
directory = os.path.join(DOWNLOAD_DIR, folder_name)
|
| 320 |
+
os.makedirs(directory, exist_ok=True)
|
|
|
|
|
|
|
| 321 |
|
| 322 |
+
try:
|
| 323 |
+
downloaded_files = []
|
| 324 |
+
for url in urls:
|
| 325 |
+
# Use the robust Hugging Face Hub library for download
|
| 326 |
+
parsed_url = urllib.parse.urlparse(url)
|
| 327 |
+
path_parts = parsed_url.path.strip("/").split("/")
|
| 328 |
+
if len(path_parts) < 4:
|
| 329 |
+
raise ValueError("❌ Invalid Hugging Face URL structure.")
|
| 330 |
+
repo_id = f"{path_parts[0]}/{path_parts[1]}"
|
| 331 |
+
revision = "main"
|
| 332 |
+
if "resolve" in path_parts:
|
| 333 |
+
resolve_idx = path_parts.index("resolve")
|
| 334 |
+
if resolve_idx + 1 < len(path_parts):
|
| 335 |
+
revision = path_parts[resolve_idx + 1]
|
| 336 |
+
filename = "/".join(path_parts[resolve_idx + 2:])
|
| 337 |
+
else:
|
| 338 |
+
# Assume it's a blob link pointing to a file
|
| 339 |
+
filename = path_parts[-1]
|
| 340 |
+
|
| 341 |
+
# Download the file
|
| 342 |
+
local_path = hf_hub_download(
|
| 343 |
+
repo_id=repo_id,
|
| 344 |
+
filename=filename,
|
| 345 |
+
revision=revision,
|
| 346 |
+
cache_dir=directory,
|
| 347 |
+
local_dir=directory,
|
| 348 |
+
local_dir_use_symlinks=False
|
| 349 |
+
)
|
| 350 |
+
downloaded_files.append(local_path)
|
| 351 |
|
| 352 |
+
# Unzip if needed
|
| 353 |
+
for f in self.find_files(directory, (".zip",)):
|
| 354 |
+
self.unzip_in_folder(f, directory)
|
| 355 |
|
| 356 |
+
model, index = self.find_model_and_index(directory)
|
|
|
|
|
|
|
| 357 |
|
| 358 |
+
if not model:
|
| 359 |
+
raise ValueError("❌ .pth model file not found in downloaded content.")
|
| 360 |
+
|
| 361 |
+
gr.Info(f"✅ Model loaded: {os.path.basename(model)}")
|
| 362 |
+
if index:
|
| 363 |
+
gr.Info(f"📌 Index loaded: {os.path.basename(index)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 364 |
else:
|
| 365 |
+
gr.Warning("⚠️ Index file not found – conversion may be less accurate.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
+
# Schedule cleanup
|
| 368 |
+
self.clear_directory_later(directory, delay=30)
|
| 369 |
+
|
| 370 |
+
# Add to recent models
|
| 371 |
+
self.add_recent_model(os.path.abspath(model))
|
| 372 |
|
| 373 |
+
return os.path.abspath(model), os.path.abspath(index) if index else None
|
| 374 |
|
| 375 |
+
except Exception as e:
|
| 376 |
+
shutil.rmtree(directory, ignore_errors=True)
|
| 377 |
+
logger.error(f"Download failed: {e}")
|
| 378 |
+
raise gr.Error(f"❌ Download failed: {str(e)}")
|
| 379 |
+
|
| 380 |
+
# Audio Processing Class
|
| 381 |
+
class AudioProcessor:
|
| 382 |
+
"""Handles audio processing tasks like noise reduction and effects."""
|
| 383 |
+
|
| 384 |
+
@staticmethod
|
| 385 |
+
def apply_noisereduce(audio_paths: List[str]) -> List[str]:
|
| 386 |
+
"""Apply noise reduction to audio files."""
|
| 387 |
+
results = []
|
| 388 |
+
for path in audio_paths:
|
| 389 |
+
out_path = f"{os.path.splitext(path)[0]}_denoised.wav"
|
| 390 |
+
try:
|
| 391 |
+
audio = AudioSegment.from_file(path)
|
| 392 |
+
samples = np.array(audio.get_array_of_samples())
|
| 393 |
+
sr = audio.frame_rate
|
| 394 |
+
reduced = nr.reduce_noise(y=samples.astype(np.float32), sr=sr, prop_decrease=0.6)
|
| 395 |
+
reduced_audio = AudioSegment(
|
| 396 |
+
reduced.tobytes(),
|
| 397 |
+
frame_rate=sr,
|
| 398 |
+
sample_width=audio.sample_width,
|
| 399 |
+
channels=audio.channels
|
| 400 |
+
)
|
| 401 |
+
reduced_audio.export(out_path, format="wav")
|
| 402 |
+
results.append(out_path)
|
| 403 |
+
gr.Info("🔊 Noise reduction applied.")
|
| 404 |
+
except Exception as e:
|
| 405 |
+
logger.error(f"Noise reduction failed: {e}")
|
| 406 |
+
results.append(path)
|
| 407 |
+
return results
|
| 408 |
+
|
| 409 |
+
@staticmethod
|
| 410 |
+
def apply_audio_effects(audio_paths: List[str]) -> List[str]:
|
| 411 |
+
"""Apply audio effects to audio files."""
|
| 412 |
+
results = []
|
| 413 |
+
board = Pedalboard([
|
| 414 |
+
HighpassFilter(cutoff_frequency_hz=80),
|
| 415 |
+
Compressor(ratio=4, threshold_db=-15),
|
| 416 |
+
Reverb(room_size=0.15, damping=0.7, wet_level=0.15, dry_level=0.85)
|
| 417 |
+
])
|
| 418 |
+
for path in audio_paths:
|
| 419 |
+
out_path = f"{os.path.splitext(path)[0]}_reverb.wav"
|
| 420 |
+
try:
|
| 421 |
+
with AudioFile(path) as f:
|
| 422 |
+
with AudioFile(out_path, 'w', f.samplerate, f.num_channels) as o:
|
| 423 |
+
while f.tell() < f.frames:
|
| 424 |
+
chunk = f.read(int(f.samplerate))
|
| 425 |
+
effected = board(chunk, f.samplerate)
|
| 426 |
+
o.write(effected)
|
| 427 |
+
results.append(out_path)
|
| 428 |
+
gr.Info("🎛️ Audio effects applied.")
|
| 429 |
+
except Exception as e:
|
| 430 |
+
logger.error(f"Effects failed: {e}")
|
| 431 |
+
results.append(path)
|
| 432 |
+
return results
|
| 433 |
+
|
| 434 |
+
@staticmethod
|
| 435 |
+
def validate_audio_files(file_paths: List[str]) -> List[str]:
|
| 436 |
+
"""Validate that files are supported audio formats."""
|
| 437 |
+
valid_files = []
|
| 438 |
+
for path in file_paths:
|
| 439 |
+
if os.path.splitext(path)[1].lower() in SUPPORTED_AUDIO_FORMATS:
|
| 440 |
+
valid_files.append(path)
|
| 441 |
+
else:
|
| 442 |
+
gr.Warning(f"⚠️ Skipping unsupported file: {os.path.basename(path)}")
|
| 443 |
+
return valid_files
|
| 444 |
+
|
| 445 |
+
# TTS Handler Class
|
| 446 |
+
class TTSHandler:
|
| 447 |
+
"""Handles text-to-speech functionality."""
|
| 448 |
+
|
| 449 |
+
@staticmethod
|
| 450 |
+
async def generate_tts(text: str, voice: str, output_path: str):
|
| 451 |
+
"""Generate TTS audio from text."""
|
| 452 |
+
communicate = edge_tts.Communicate(text, voice.split("-")[0])
|
| 453 |
+
await communicate.save(output_path)
|
| 454 |
+
|
| 455 |
+
@staticmethod
|
| 456 |
+
def infer_tts(tts_voice: str, tts_text: str, play_tts: bool) -> Tuple[List[str], Optional[str]]:
|
| 457 |
+
"""Generate TTS audio with the specified voice."""
|
| 458 |
+
if not tts_text.strip():
|
| 459 |
+
raise ValueError("❌ Text is empty.")
|
| 460 |
+
|
| 461 |
+
folder = f"tts_{random.randint(10000, 99999)}"
|
| 462 |
+
out_dir = os.path.join(OUTPUT_DIR, folder)
|
| 463 |
+
os.makedirs(out_dir, exist_ok=True)
|
| 464 |
+
out_path = os.path.join(out_dir, "tts_output.mp3")
|
| 465 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
try:
|
| 467 |
+
asyncio.run(TTSHandler.generate_tts(tts_text, tts_voice, out_path))
|
| 468 |
+
if play_tts:
|
| 469 |
+
return [out_path], out_path
|
| 470 |
+
return [out_path], None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
except Exception as e:
|
| 472 |
+
logger.error(f"TTS generation failed: {e}")
|
| 473 |
+
raise gr.Error(f"TTS generation failed: {str(e)}")
|
| 474 |
+
|
| 475 |
+
@staticmethod
|
| 476 |
+
def get_voice_list() -> List[str]:
|
| 477 |
+
"""Get list of available TTS voices."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 478 |
try:
|
| 479 |
+
return sorted(
|
| 480 |
+
[f"{v['ShortName']}-{v['Gender']}" for v in asyncio.run(edge_tts.list_voices())]
|
| 481 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 482 |
except Exception as e:
|
| 483 |
+
logger.error(f"Failed to get voice list: {e}")
|
| 484 |
+
return ["en-US-JennyNeural-Female"] # Fallback
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 485 |
|
| 486 |
+
# Main Conversion Function
|
| 487 |
@spaces.GPU()
|
| 488 |
def run_conversion(
|
| 489 |
+
audio_files: List[str],
|
| 490 |
+
model_path: str,
|
| 491 |
+
pitch_algo: str,
|
| 492 |
+
pitch_level: int,
|
| 493 |
+
index_path: Optional[str],
|
| 494 |
+
index_rate: float,
|
| 495 |
+
filter_radius: int,
|
| 496 |
+
rms_mix_rate: float,
|
| 497 |
+
protect: float,
|
| 498 |
+
denoise: bool,
|
| 499 |
+
effects: bool,
|
| 500 |
+
model_manager: ModelManager
|
| 501 |
+
) -> List[str]:
|
| 502 |
+
"""Run voice conversion on the provided audio files."""
|
| 503 |
if not audio_files:
|
| 504 |
raise ValueError("❌ Please upload at least one audio file.")
|
| 505 |
+
|
| 506 |
+
# Validate audio files
|
| 507 |
+
audio_files = AudioProcessor.validate_audio_files(audio_files)
|
| 508 |
+
if not audio_files:
|
| 509 |
+
raise ValueError("❌ No valid audio files provided.")
|
| 510 |
|
| 511 |
random_tag = f"USER_{random.randint(10000000, 99999999)}"
|
| 512 |
|
| 513 |
# Configure converter
|
| 514 |
+
model_manager.converter.apply_conf(
|
| 515 |
tag=random_tag,
|
| 516 |
file_model=model_path,
|
| 517 |
pitch_algo=pitch_algo,
|
|
|
|
| 526 |
|
| 527 |
# Run conversion
|
| 528 |
try:
|
| 529 |
+
results = model_manager.converter(audio_files, random_tag, overwrite=False, parallel_workers=8)
|
| 530 |
except Exception as e:
|
| 531 |
+
logger.error(f"Conversion failed: {e}")
|
| 532 |
raise gr.Error(f"❌ Conversion failed: {str(e)}")
|
| 533 |
|
| 534 |
# Post-processing
|
| 535 |
if denoise:
|
| 536 |
+
results = AudioProcessor.apply_noisereduce(results)
|
| 537 |
if effects:
|
| 538 |
+
results = AudioProcessor.apply_audio_effects(results)
|
| 539 |
|
| 540 |
return results
|
| 541 |
|
| 542 |
+
# Gradio UI Builder
|
| 543 |
def create_ui():
|
| 544 |
+
"""Create and configure the Gradio UI."""
|
| 545 |
+
# Initialize model manager
|
| 546 |
+
model_manager = ModelManager()
|
| 547 |
+
|
| 548 |
+
with gr.Blocks(theme=orange_red_theme, title="RVC+", fill_width=True, delete_cache=(3200, 3200), css=css) as app:
|
| 549 |
gr.HTML(title)
|
| 550 |
gr.HTML(description)
|
| 551 |
|
|
|
|
| 556 |
with gr.Column(scale=1):
|
| 557 |
gr.Markdown("### 🔊 Upload Audio")
|
| 558 |
audio_input = gr.File(
|
| 559 |
+
label="Audio Files (WAV, MP3, OGG, FLAC, M4A)",
|
| 560 |
file_count="multiple",
|
| 561 |
type="filepath"
|
| 562 |
)
|
|
|
|
| 565 |
model_file = gr.File(label="Upload .pth Model", type="filepath")
|
| 566 |
index_file = gr.File(label="Upload .index File (Optional)", type="filepath")
|
| 567 |
|
| 568 |
+
# Recent models dropdown
|
| 569 |
+
recent_models = gr.Dropdown(
|
| 570 |
+
label="Recent Models",
|
| 571 |
+
choices=model_manager.config["recent_models"],
|
| 572 |
+
value=None,
|
| 573 |
+
interactive=True
|
| 574 |
+
)
|
| 575 |
+
recent_models.change(
|
| 576 |
+
lambda x: x if x else None,
|
| 577 |
+
inputs=[recent_models],
|
| 578 |
+
outputs=[model_file]
|
| 579 |
+
)
|
| 580 |
+
|
| 581 |
use_url = gr.Checkbox(label="🌐 Download from Hugging Face URL", value=False)
|
| 582 |
|
| 583 |
with gr.Group(visible=False) as url_group:
|
|
|
|
| 600 |
)
|
| 601 |
|
| 602 |
download_btn.click(
|
| 603 |
+
model_manager.download_model,
|
| 604 |
inputs=[model_url],
|
| 605 |
outputs=[model_file, index_file]
|
| 606 |
).then(
|
| 607 |
+
lambda: gr.update(visible=False), # Hide URL group after download
|
| 608 |
outputs=[url_group]
|
| 609 |
+
).then(
|
| 610 |
+
lambda: gr.update(choices=model_manager.config["recent_models"]),
|
| 611 |
+
outputs=[recent_models]
|
| 612 |
)
|
| 613 |
|
| 614 |
with gr.Column(scale=1):
|
|
|
|
| 625 |
|
| 626 |
denoise = gr.Checkbox(False, label="🔇 Denoise Output")
|
| 627 |
reverb = gr.Checkbox(False, label="🎛️ Add Reverb")
|
| 628 |
+
|
| 629 |
+
# Save settings button
|
| 630 |
+
save_settings_btn = gr.Button("💾 Save as Default", size="sm")
|
| 631 |
+
save_settings_btn.click(
|
| 632 |
+
lambda *args: model_manager.config.update({"default_settings": {
|
| 633 |
+
"pitch_algo": args[0], "pitch_level": args[1], "index_rate": args[2],
|
| 634 |
+
"filter_radius": args[3], "rms_mix_rate": args[4], "protect": args[5],
|
| 635 |
+
"denoise": args[6], "reverb": args[7]
|
| 636 |
+
}}) or model_manager.save_config(),
|
| 637 |
+
inputs=[pitch_algo, pitch_level, index_rate, filter_radius,
|
| 638 |
+
rms_mix_rate, protect, denoise, reverb]
|
| 639 |
+
)
|
| 640 |
|
| 641 |
convert_btn = gr.Button("🚀 Convert Voice", variant="primary", size="lg")
|
| 642 |
output_files = gr.File(label="✅ Converted Audio", file_count="multiple")
|
| 643 |
+
|
| 644 |
+
# Progress indicator
|
| 645 |
+
progress = gr.Progress()
|
| 646 |
|
| 647 |
convert_btn.click(
|
| 648 |
run_conversion,
|
|
|
|
| 658 |
protect,
|
| 659 |
denoise,
|
| 660 |
reverb,
|
| 661 |
+
gr.State(model_manager) # Pass model manager as state
|
| 662 |
],
|
| 663 |
outputs=output_files,
|
| 664 |
)
|
|
|
|
| 667 |
with gr.Tab("🗣️ Text-to-Speech", id=1):
|
| 668 |
gr.Markdown("### Convert text to speech using Edge TTS.")
|
| 669 |
|
| 670 |
+
# Get voice list
|
| 671 |
+
tts_voice_list = TTSHandler.get_voice_list()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 672 |
|
| 673 |
with gr.Row():
|
| 674 |
with gr.Column(scale=1):
|
|
|
|
| 677 |
label="Text Input",
|
| 678 |
lines=5
|
| 679 |
)
|
| 680 |
+
tts_voice = gr.Dropdown(
|
| 681 |
+
tts_voice_list,
|
| 682 |
+
value=tts_voice_list[0] if tts_voice_list else None,
|
| 683 |
+
label="Voice"
|
| 684 |
+
)
|
| 685 |
tts_play = gr.Checkbox(False, label="🎧 Auto-play audio")
|
| 686 |
tts_btn = gr.Button("🔊 Generate Speech", variant="secondary")
|
| 687 |
|
|
|
|
| 690 |
tts_preview = gr.Audio(label="Preview", visible=False, autoplay=True)
|
| 691 |
|
| 692 |
tts_btn.click(
|
| 693 |
+
TTSHandler.infer_tts,
|
| 694 |
inputs=[tts_voice, tts_text, tts_play],
|
| 695 |
outputs=[tts_output_audio, tts_preview],
|
| 696 |
).then(
|
|
|
|
| 698 |
inputs=[tts_preview],
|
| 699 |
outputs=[tts_preview]
|
| 700 |
)
|
| 701 |
+
|
| 702 |
+
# ============= TAB 3: Settings =============
|
| 703 |
+
with gr.Tab("⚙️ Settings", id=2):
|
| 704 |
+
gr.Markdown("### Application Settings")
|
| 705 |
+
|
| 706 |
+
with gr.Row():
|
| 707 |
+
with gr.Column():
|
| 708 |
+
gr.Markdown("#### Model Management")
|
| 709 |
+
clear_cache_btn = gr.Button("🗑️ Clear Model Cache", variant="secondary")
|
| 710 |
+
clear_cache_btn.click(
|
| 711 |
+
lambda: shutil.rmtree(DOWNLOAD_DIR, ignore_errors=True) or gr.Info("Cache cleared"),
|
| 712 |
+
outputs=[]
|
| 713 |
+
)
|
| 714 |
+
|
| 715 |
+
gr.Markdown("#### Recent Models")
|
| 716 |
+
recent_models_list = gr.DataFrame(
|
| 717 |
+
value=[[model] for model in model_manager.config["recent_models"]],
|
| 718 |
+
headers=["Model Path"],
|
| 719 |
+
datatype=["str"],
|
| 720 |
+
interactive=False
|
| 721 |
+
)
|
| 722 |
+
|
| 723 |
+
with gr.Row():
|
| 724 |
+
with gr.Column():
|
| 725 |
+
gr.Markdown("#### System Information")
|
| 726 |
+
system_info = gr.HTML(
|
| 727 |
+
f"""
|
| 728 |
+
<div>
|
| 729 |
+
<p><strong>Python Version:</strong> {os.sys.version}</p>
|
| 730 |
+
<p><strong>Platform:</strong> {os.sys.platform}</p>
|
| 731 |
+
<p><strong>Download Directory:</strong> {os.path.abspath(DOWNLOAD_DIR)}</p>
|
| 732 |
+
<p><strong>Output Directory:</strong> {os.path.abspath(OUTPUT_DIR)}</p>
|
| 733 |
+
</div>
|
| 734 |
+
"""
|
| 735 |
+
)
|
| 736 |
|
| 737 |
+
# Examples
|
| 738 |
gr.Markdown("### 📚 Examples")
|
| 739 |
gr.Examples(
|
| 740 |
examples=[
|
|
|
|
| 746 |
index_rate, filter_radius, rms_mix_rate, protect, denoise, reverb
|
| 747 |
],
|
| 748 |
outputs=output_files,
|
| 749 |
+
fn=lambda *args: run_conversion(*args, model_manager),
|
| 750 |
cache_examples=False,
|
| 751 |
)
|
| 752 |
|
| 753 |
return app
|
| 754 |
|
| 755 |
+
# Launch App
|
| 756 |
if __name__ == "__main__":
|
| 757 |
app = create_ui()
|
| 758 |
app.queue(default_concurrency_limit=10)
|