Spaces:
Paused
Paused
File size: 5,460 Bytes
4efde5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 |
# Suna Backend
## Quick Setup
The easiest way to get your backend configured is to use the setup wizard from the project root:
```bash
cd .. # Navigate to project root if you're in the backend directory
python setup.py
```
This will configure all necessary environment variables and services automatically.
## Running the backend
Within the backend directory, run the following command to stop and start the backend:
```bash
docker compose down && docker compose up --build
```
## Running Individual Services
You can run individual services from the docker-compose file. This is particularly useful during development:
### Running only Redis
```bash
docker compose up redis
```
### Running only the API and Worker
```bash
docker compose up api worker
```
## Development Setup
For local development, you might only need to run Redis, while working on the API locally. This is useful when:
- You're making changes to the API code and want to test them directly
- You want to avoid rebuilding the API container on every change
- You're running the API service directly on your machine
To run just Redis for development:
```bash
docker compose up redis
```
Then you can run your API service locally with the following commands:
```sh
# On one terminal
cd backend
uv run api.py
# On another terminal
cd backend
uv run dramatiq --processes 4 --threads 4 run_agent_background
```
### Environment Configuration
The setup wizard automatically creates a `.env` file with all necessary configuration. If you need to configure manually or understand the setup:
#### Required Environment Variables
```sh
# Environment Mode
ENV_MODE=local
# Database (Supabase)
SUPABASE_URL=https://your-project.supabase.co
SUPABASE_ANON_KEY=your-anon-key
SUPABASE_SERVICE_ROLE_KEY=your-service-role-key
# Infrastructure
REDIS_HOST=redis # Use 'localhost' when running API locally
REDIS_PORT=6379
# LLM Providers (at least one required)
ANTHROPIC_API_KEY=your-anthropic-key
OPENAI_API_KEY=your-openai-key
OPENROUTER_API_KEY=your-openrouter-key
GEMINI_API_KEY=your-gemini-api-key
MODEL_TO_USE=openrouter/moonshotai/kimi-k2
# Search and Web Scraping
TAVILY_API_KEY=your-tavily-key
FIRECRAWL_API_KEY=your-firecrawl-key
FIRECRAWL_URL=https://api.firecrawl.dev
# Agent Execution
DAYTONA_API_KEY=your-daytona-key
DAYTONA_SERVER_URL=https://app.daytona.io/api
DAYTONA_TARGET=us
WEBHOOK_BASE_URL=https://yourdomain.com
# MCP Configuration
MCP_CREDENTIAL_ENCRYPTION_KEY=your-generated-encryption-key
# Optional APIs
RAPID_API_KEY=your-rapidapi-key
NEXT_PUBLIC_URL=http://localhost:3000
```
When running services individually, make sure to:
1. Check your `.env` file and adjust any necessary environment variables
2. Ensure Redis connection settings match your local setup (default: `localhost:6379`)
3. Update any service-specific environment variables if needed
### Important: Redis Host Configuration
When running the API locally with Redis in Docker, you need to set the correct Redis host in your `.env` file:
- For Docker-to-Docker communication (when running both services in Docker): use `REDIS_HOST=redis`
- For local-to-Docker communication (when running API locally): use `REDIS_HOST=localhost`
Example `.env` configuration for local development:
```sh
REDIS_HOST=localhost # (instead of 'redis')
REDIS_PORT=6379
REDIS_PASSWORD=
```
---
## Feature Flags
The backend includes a Redis-backed feature flag system that allows you to control feature availability without code deployments.
### Setup
The feature flag system uses the existing Redis service and is automatically available when Redis is running.
### CLI Management
Use the CLI tool to manage feature flags:
```bash
cd backend/flags
python setup.py <command> [arguments]
```
#### Available Commands
**Enable a feature flag:**
```bash
python setup.py enable test_flag "Test decsription"
```
**Disable a feature flag:**
```bash
python setup.py disable test_flag
```
**List all feature flags:**
```bash
python setup.py list
```
### API Endpoints
Feature flags are accessible via REST API:
**Get all feature flags:**
```bash
GET /feature-flags
```
**Get specific feature flag:**
```bash
GET /feature-flags/{flag_name}
```
Example response:
```json
{
"test_flag": {
"enabled": true,
"description": "Test flag",
"updated_at": "2024-01-15T10:30:00Z"
}
}
```
### Backend Integration
Use feature flags in your Python code:
```python
from flags.flags import is_enabled
# Check if a feature is enabled
if await is_enabled('test_flag'):
# Feature-specific logic
pass
# With fallback value
enabled = await is_enabled('new_feature', default=False)
```
### Current Feature Flags
The system currently supports these feature flags:
- **`custom_agents`**: Controls custom agent creation and management
- **`agent_marketplace`**: Controls agent marketplace functionality
### Error Handling
The feature flag system includes robust error handling:
- If Redis is unavailable, flags default to `False`
- API endpoints return empty objects on Redis errors
- CLI operations show clear error messages
### Caching
- Backend operations are direct Redis calls (no caching)
- Frontend includes 5-minute caching for performance
- Use `clearCache()` in frontend to force refresh
---
## Production Setup
For production deployments, use the following command to set resource limits
```sh
docker compose -f docker-compose.yml -f docker-compose.prod.yml up -d
```
|