File size: 6,913 Bytes
f1baba0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import datetime as dt
import numpy as np
import pandas as pd
import requests
import streamlit as st

# --- CONFIG ---
API_URL = os.getenv("API_URL", "https://rjuro-hotel-cancel-api.hf.space/predict_batch")

NUMERIC_FEATURES = [
    'lead_time','arrival_date_week_number','arrival_date_day_of_month',
    'stays_in_weekend_nights','stays_in_week_nights','adults','children',
    'babies','is_repeated_guest','previous_cancellations',
    'previous_bookings_not_canceled','booking_changes','agent',
    'days_in_waiting_list','adr','required_car_parking_spaces',
    'total_of_special_requests','total_guests','total_nights','is_summer',
    'previous_cancellation_rate'
]
CATEGORICAL_FEATURES = [
    'hotel','meal','market_segment','distribution_channel',
    'reserved_room_type','deposit_type','customer_type'
]
ALL_FEATURES = NUMERIC_FEATURES + CATEGORICAL_FEATURES

st.set_page_config(page_title="Weekly Cancellation Predictions", layout="wide")

# --- SIMPLE SYNTH GENERATOR ---
def synth_week(n_per_day=300, seed=42):
    rng = np.random.default_rng(seed)
    today = dt.date.today()
    all_rows = []
    for i in range(1, 8):
        arr = today + dt.timedelta(days=i)
        week = int(arr.isocalendar().week)
        dom = arr.day
        is_summer = int(arr.month in [6,7,8])

        n = n_per_day
        lead_time = np.clip(rng.gamma(2.0, 60.0, n).astype(int), 1, 365)
        wkd = rng.poisson(1.0, n)
        wk = rng.poisson(3.0, n)
        adults = np.maximum(1, rng.poisson(1.5, n)+1)
        children = rng.binomial(2, 0.15, n)
        babies = rng.binomial(1, 0.05, n)
        is_repeated_guest = rng.binomial(1, 0.12, n)
        prev_canc = rng.binomial(2, 0.05, n)
        prev_notc = rng.binomial(3, 0.15, n)
        booking_changes = rng.poisson(0.2, n)
        agent = rng.integers(0, 5, n)  # 0≈direct
        wait_list = rng.binomial(5, 0.05, n)
        adr = np.clip(rng.normal(120, 35, n), 30, 450)
        parking = rng.binomial(1, 0.12, n)
        special_req = rng.poisson(0.6, n)
        total_nights = (wkd + wk).astype(int)
        total_guests = (adults + children + babies).astype(int)
        prev_rate = prev_canc / np.maximum(1e-6, (prev_canc + prev_notc + 1e-6))

        def choice(vals, probs):
            p = np.array(probs, dtype=float); p = p / p.sum()
            return rng.choice(vals, p=p, size=n)

        hotel = choice(['City Hotel','Resort Hotel'], [0.7, 0.3])
        meal = choice(['BB','HB','FB','SC'], [0.75,0.15,0.03,0.07])
        market = choice(['Online TA','Direct','Corporate','Offline TA/TO'], [0.45,0.30,0.15,0.10])
        channel = choice(['TA/TO','Direct','Corporate','GDS'], [0.5,0.3,0.15,0.05])
        roomtype = choice(list("ABCDEFG"), [0.35,0.25,0.15,0.1,0.08,0.05,0.02])
        deposit = choice(['No Deposit','Non Refund','Refundable'], [0.75,0.15,0.10])
        cust = choice(['Transient','Contract','Group','Transient-Party'], [0.7,0.15,0.08,0.07])

        df = pd.DataFrame({
            'lead_time': lead_time,
            'arrival_date_week_number': week,
            'arrival_date_day_of_month': dom,
            'stays_in_weekend_nights': wkd,
            'stays_in_week_nights': wk,
            'adults': adults,
            'children': children,
            'babies': babies,
            'is_repeated_guest': is_repeated_guest,
            'previous_cancellations': prev_canc,
            'previous_bookings_not_canceled': prev_notc,
            'booking_changes': booking_changes,
            'agent': agent,
            'days_in_waiting_list': wait_list,
            'adr': adr,
            'required_car_parking_spaces': parking,
            'total_of_special_requests': special_req,
            'total_guests': total_guests,
            'total_nights': total_nights,
            'is_summer': is_summer,
            'previous_cancellation_rate': prev_rate,
            'hotel': hotel,
            'meal': meal,
            'market_segment': market,
            'distribution_channel': channel,
            'reserved_room_type': roomtype,
            'deposit_type': deposit,
            'customer_type': cust
        })
        df.insert(0, "arrival_date", pd.Timestamp(arr))
        all_rows.append(df)
    return pd.concat(all_rows, ignore_index=True)

def call_api(df: pd.DataFrame) -> np.ndarray:
    payload = {"data": df[ALL_FEATURES].to_dict(orient="records")}
    r = requests.post(API_URL, json=payload, timeout=60)
    r.raise_for_status()
    return np.array(r.json()["probabilities"])

# --- UI ---
st.title("Weekly Booking Predictions")
st.caption("API: " + API_URL)

with st.sidebar:
    st.header("Simulation")
    n_per_day = st.slider("Synthetic bookings per day", 50, 2000, 400, 50)
    t_low = st.slider("Reminder threshold", 0.05, 0.60, 0.30, 0.01)
    t_high = st.slider("Perk (prepay upgrade) threshold", 0.30, 0.95, 0.65, 0.01)
    seed = st.number_input("Random seed", 0, 99999, 42, 1)
    st.caption("Rules: p ≥ t_high → Perk; t_low ≤ p < t_high → Reminder; else → None.")

cols = st.columns(2)
with cols[0]:
    if st.button("Generate & Predict", use_container_width=True):
        df = synth_week(n_per_day=n_per_day, seed=int(seed))
        probs = call_api(df)
        df['pred_cancel_prob'] = probs
        df['action'] = np.where(
            probs >= t_high, "Perk-Upgrade (Prepay)",
            np.where(probs >= t_low, "Reminder", "None")
        )

        daily = (
            df.groupby(df['arrival_date'].dt.date)
              .agg(n_bookings=('arrival_date','count'),
                   mean_risk=('pred_cancel_prob','mean'),
                   p75=('pred_cancel_prob', lambda x: np.quantile(x, 0.75)),
                   n_perk=('action', lambda s: (s=="Perk-Upgrade (Prepay)").sum()),
                   n_reminder=('action', lambda s: (s=="Reminder").sum()),
                   n_none=('action', lambda s: (s=="None").sum()))
              .reset_index()
              .rename(columns={'arrival_date':'date'})
        )

        st.subheader("Daily Summary (Next 7 Days)")
        st.dataframe(daily, use_container_width=True, hide_index=True)

        st.subheader("Preview: First 200 Bookings with Suggested Actions")
        st.dataframe(
            df[['arrival_date','hotel','market_segment','deposit_type','lead_time',
                'total_nights','total_guests','pred_cancel_prob','action']].head(200),
            use_container_width=True, hide_index=True
        )

        st.download_button(
            "Download Full Weekly Predictions (CSV)",
            df.to_csv(index=False).encode("utf-8"),
            file_name="weekly_predictions_with_actions.csv",
            mime="text/csv"
        )

with cols[1]:
    st.subheader("How it works")
    st.markdown(
        "- Synthetic bookings for the next 7 days\n"
        "- Calls the public FastAPI to get cancellation probabilities\n"
        "- Simple rules pick suggested actions"
    )