Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +91 -0
- custom-api.py +209 -0
- image_extractor.py +390 -0
app.py
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import requests
|
| 3 |
+
|
| 4 |
+
API_URL = "http://localhost:8000/extract"
|
| 5 |
+
|
| 6 |
+
def get_product_data_from_url(url):
|
| 7 |
+
"""
|
| 8 |
+
Retrieve product data (images, measurements, materials) from the API.
|
| 9 |
+
|
| 10 |
+
Args:
|
| 11 |
+
url: Product URL to extract data from
|
| 12 |
+
|
| 13 |
+
Returns:
|
| 14 |
+
Tuple of (image_list, measurements_str, materials_str)
|
| 15 |
+
"""
|
| 16 |
+
try:
|
| 17 |
+
payload = {
|
| 18 |
+
"url": url,
|
| 19 |
+
"download_images": False
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
response = requests.post(API_URL, json=payload)
|
| 23 |
+
response.raise_for_status()
|
| 24 |
+
data = response.json()
|
| 25 |
+
|
| 26 |
+
# Extract images
|
| 27 |
+
images = [img["url"] for img in data.get("images", {}).values()]
|
| 28 |
+
|
| 29 |
+
# Format measurements into markdown
|
| 30 |
+
measurements = data.get("measurements", {})
|
| 31 |
+
if measurements:
|
| 32 |
+
measurements_str = "\n".join([f"- **{k.title()}**: {v}" for k, v in measurements.items()])
|
| 33 |
+
else:
|
| 34 |
+
measurements_str = "No measurements found."
|
| 35 |
+
|
| 36 |
+
# Format materials into markdown
|
| 37 |
+
materials = data.get("materials", {})
|
| 38 |
+
if materials:
|
| 39 |
+
materials_str = "\n".join([f"- **{k.title()}**: {v}" for k, v in materials.items()])
|
| 40 |
+
else:
|
| 41 |
+
materials_str = "No materials information found."
|
| 42 |
+
|
| 43 |
+
return images, measurements_str, materials_str
|
| 44 |
+
|
| 45 |
+
except Exception as e:
|
| 46 |
+
error_message = f"Error: {str(e)}"
|
| 47 |
+
return [], error_message, error_message
|
| 48 |
+
|
| 49 |
+
def create_interface():
|
| 50 |
+
"""Create and configure the Gradio interface"""
|
| 51 |
+
with gr.Blocks(title="IKEA Product Image + Measurement Extractor") as demo:
|
| 52 |
+
gr.Markdown("## IKEA Product Image + Measurement Extractor")
|
| 53 |
+
gr.Markdown("Enter an IKEA product URL to extract images, measurements, and materials information.")
|
| 54 |
+
|
| 55 |
+
with gr.Row():
|
| 56 |
+
with gr.Column(scale=1):
|
| 57 |
+
# Input section
|
| 58 |
+
url_input = gr.Textbox(
|
| 59 |
+
label="Product URL",
|
| 60 |
+
placeholder="https://www.ikea.com/product/...",
|
| 61 |
+
info="Paste IKEA product URL here"
|
| 62 |
+
)
|
| 63 |
+
submit_btn = gr.Button("Extract Product Data", variant="primary")
|
| 64 |
+
|
| 65 |
+
# Results section - Measurements and Materials
|
| 66 |
+
with gr.Accordion("Product Information", open=True):
|
| 67 |
+
measurements_display = gr.Markdown(label="Measurements")
|
| 68 |
+
materials_display = gr.Markdown(label="Materials")
|
| 69 |
+
|
| 70 |
+
with gr.Column(scale=2):
|
| 71 |
+
# Gallery component for displaying images
|
| 72 |
+
image_gallery = gr.Gallery(
|
| 73 |
+
label="Product Images",
|
| 74 |
+
show_label=True,
|
| 75 |
+
columns=2,
|
| 76 |
+
height=500,
|
| 77 |
+
object_fit="contain"
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
# Set up the click event
|
| 81 |
+
submit_btn.click(
|
| 82 |
+
fn=get_product_data_from_url,
|
| 83 |
+
inputs=url_input,
|
| 84 |
+
outputs=[image_gallery, measurements_display, materials_display]
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
return demo
|
| 88 |
+
|
| 89 |
+
if __name__ == "__main__":
|
| 90 |
+
demo = create_interface()
|
| 91 |
+
demo.launch(share=False)
|
custom-api.py
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Image Extractor API
|
| 3 |
+
|
| 4 |
+
A FastAPI application for extracting high-resolution product images from web pages.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
from fastapi import FastAPI, HTTPException, Depends, Request
|
| 8 |
+
from fastapi.responses import JSONResponse
|
| 9 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 10 |
+
from fastapi.openapi.utils import get_openapi
|
| 11 |
+
from pydantic import BaseModel, HttpUrl, Field
|
| 12 |
+
import os
|
| 13 |
+
import uuid
|
| 14 |
+
from typing import Dict, Any, Optional, List, Union
|
| 15 |
+
import logging
|
| 16 |
+
import uvicorn
|
| 17 |
+
import time
|
| 18 |
+
|
| 19 |
+
# Import from our refactored image_extractor module
|
| 20 |
+
from image_extractor import extract_images_from_url, download_image, process_product_page
|
| 21 |
+
|
| 22 |
+
# Configure logging
|
| 23 |
+
logging.basicConfig(
|
| 24 |
+
level=logging.INFO,
|
| 25 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 26 |
+
)
|
| 27 |
+
logger = logging.getLogger(__name__)
|
| 28 |
+
|
| 29 |
+
# Define API Models
|
| 30 |
+
class ExtractImageRequest(BaseModel):
|
| 31 |
+
"""Request model for image extraction"""
|
| 32 |
+
url: HttpUrl = Field(..., description="URL of the product page to extract images from")
|
| 33 |
+
download_images: bool = Field(True, description="Whether to download the images or just return URLs")
|
| 34 |
+
custom_output_dir: Optional[str] = Field(None, description="Optional custom directory to save images to")
|
| 35 |
+
|
| 36 |
+
class Config:
|
| 37 |
+
schema_extra = {
|
| 38 |
+
"example": {
|
| 39 |
+
"url": "https://www.ikea.com/us/en/p/poaeng-armchair-birch-veneer-knisa-light-beige-s49388439/",
|
| 40 |
+
"download_images": True,
|
| 41 |
+
"custom_output_dir": "my_images/poaeng"
|
| 42 |
+
}
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
class ImageInfo(BaseModel):
|
| 46 |
+
"""Image information model"""
|
| 47 |
+
id: str = Field(..., description="Unique identifier for the image")
|
| 48 |
+
url: str = Field(..., description="URL of the image")
|
| 49 |
+
alt: str = Field(..., description="Alt text of the image")
|
| 50 |
+
type: str = Field(..., description="Type of image (main, measurement, etc.)")
|
| 51 |
+
path: Optional[str] = Field(None, description="Local path where image is saved (if downloaded)")
|
| 52 |
+
|
| 53 |
+
class ExtractImageResponse(BaseModel):
|
| 54 |
+
"""Response model for image extraction"""
|
| 55 |
+
request_id: str = Field(..., description="Unique identifier for this request")
|
| 56 |
+
images: Dict[str, Dict[str, Any]] = Field(..., description="Dictionary of extracted images")
|
| 57 |
+
output_dir: Optional[str] = Field(None, description="Directory where images were saved (if downloaded)")
|
| 58 |
+
measurements: Optional[Dict[str, str]] = Field(None, description="Product measurements extracted from the page")
|
| 59 |
+
materials: Optional[Dict[str, str]] = Field(None, description="Product materials extracted from the page")
|
| 60 |
+
|
| 61 |
+
class ErrorResponse(BaseModel):
|
| 62 |
+
"""Error response model"""
|
| 63 |
+
detail: str
|
| 64 |
+
|
| 65 |
+
# Create API application
|
| 66 |
+
app = FastAPI(
|
| 67 |
+
title="Image Extractor API",
|
| 68 |
+
description="API for extracting high-resolution product images from web pages",
|
| 69 |
+
version="1.0.0",
|
| 70 |
+
docs_url="/docs",
|
| 71 |
+
redoc_url="/redoc",
|
| 72 |
+
openapi_url="/openapi.json",
|
| 73 |
+
responses={
|
| 74 |
+
500: {"model": ErrorResponse}
|
| 75 |
+
}
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
# Add CORS middleware
|
| 79 |
+
app.add_middleware(
|
| 80 |
+
CORSMiddleware,
|
| 81 |
+
allow_origins=["*"], # In production, replace with specific origins
|
| 82 |
+
allow_credentials=True,
|
| 83 |
+
allow_methods=["*"],
|
| 84 |
+
allow_headers=["*"],
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Custom OpenAPI schema
|
| 88 |
+
def custom_openapi():
|
| 89 |
+
if app.openapi_schema:
|
| 90 |
+
return app.openapi_schema
|
| 91 |
+
|
| 92 |
+
openapi_schema = get_openapi(
|
| 93 |
+
title=app.title,
|
| 94 |
+
version=app.version,
|
| 95 |
+
description=app.description,
|
| 96 |
+
routes=app.routes,
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
# Custom schema customizations can be added here
|
| 100 |
+
|
| 101 |
+
app.openapi_schema = openapi_schema
|
| 102 |
+
return app.openapi_schema
|
| 103 |
+
|
| 104 |
+
app.openapi = custom_openapi
|
| 105 |
+
|
| 106 |
+
# Middleware for request timing and logging
|
| 107 |
+
@app.middleware("http")
|
| 108 |
+
async def log_requests(request: Request, call_next):
|
| 109 |
+
"""Log requests and their timing"""
|
| 110 |
+
start_time = time.time()
|
| 111 |
+
|
| 112 |
+
# Process the request
|
| 113 |
+
response = await call_next(request)
|
| 114 |
+
|
| 115 |
+
# Calculate duration
|
| 116 |
+
duration = time.time() - start_time
|
| 117 |
+
|
| 118 |
+
# Log the request details
|
| 119 |
+
logger.info(
|
| 120 |
+
f"Request {request.method} {request.url.path} "
|
| 121 |
+
f"completed in {duration:.3f}s with status {response.status_code}"
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
return response
|
| 125 |
+
|
| 126 |
+
# API Routes
|
| 127 |
+
@app.get("/", summary="Welcome endpoint", tags=["General"])
|
| 128 |
+
def read_root():
|
| 129 |
+
"""Welcome endpoint for the API"""
|
| 130 |
+
return {"message": "Welcome to the Image Extractor API"}
|
| 131 |
+
|
| 132 |
+
@app.post(
|
| 133 |
+
"/extract",
|
| 134 |
+
response_model=ExtractImageResponse,
|
| 135 |
+
responses={
|
| 136 |
+
200: {"description": "Successfully extracted images"},
|
| 137 |
+
500: {"description": "Server error", "model": ErrorResponse}
|
| 138 |
+
},
|
| 139 |
+
summary="Extract images from a URL",
|
| 140 |
+
tags=["Extraction"]
|
| 141 |
+
)
|
| 142 |
+
async def extract_images(request: ExtractImageRequest):
|
| 143 |
+
"""
|
| 144 |
+
Extract high-resolution images from a product URL.
|
| 145 |
+
|
| 146 |
+
- **url**: URL of the product page to extract images from
|
| 147 |
+
- **download_images**: Whether to download the images or just return URLs
|
| 148 |
+
- **custom_output_dir**: Optional custom directory to save images to
|
| 149 |
+
|
| 150 |
+
Returns information about extracted images and product measurements.
|
| 151 |
+
"""
|
| 152 |
+
try:
|
| 153 |
+
logger.info(f"Processing extraction request for URL: {request.url}")
|
| 154 |
+
url = str(request.url) # Convert from Pydantic HttpUrl to string
|
| 155 |
+
|
| 156 |
+
if request.download_images:
|
| 157 |
+
# Process the page and download images
|
| 158 |
+
logger.info(f"Downloading images to {'custom directory' if request.custom_output_dir else 'default directory'}")
|
| 159 |
+
result = process_product_page(url, request.custom_output_dir)
|
| 160 |
+
return result
|
| 161 |
+
else:
|
| 162 |
+
# Only extract image URLs without downloading
|
| 163 |
+
logger.info("Extracting image URLs without downloading")
|
| 164 |
+
extraction_result = extract_images_from_url(url)
|
| 165 |
+
|
| 166 |
+
# Convert the result to match our response model
|
| 167 |
+
return {
|
| 168 |
+
"request_id": extraction_result.request_id if hasattr(extraction_result, 'request_id') else extraction_result["requestId"],
|
| 169 |
+
"images": {
|
| 170 |
+
img_id: {
|
| 171 |
+
"id": img_id,
|
| 172 |
+
"url": img_info["url"] if isinstance(img_info, dict) else img_info.url,
|
| 173 |
+
"alt": img_info["alt"] if isinstance(img_info, dict) else img_info.alt,
|
| 174 |
+
"type": img_info["type"] if isinstance(img_info, dict) else img_info.type
|
| 175 |
+
}
|
| 176 |
+
for img_id, img_info in (extraction_result.images.items() if hasattr(extraction_result, 'images') else extraction_result["images"].items())
|
| 177 |
+
},
|
| 178 |
+
"measurements": (
|
| 179 |
+
extraction_result.measurements
|
| 180 |
+
if hasattr(extraction_result, 'measurements')
|
| 181 |
+
else extraction_result.get("measurements", {})
|
| 182 |
+
),
|
| 183 |
+
"materials": (
|
| 184 |
+
extraction_result.materials
|
| 185 |
+
if hasattr(extraction_result, 'materials')
|
| 186 |
+
else extraction_result.get("materials", {})
|
| 187 |
+
),
|
| 188 |
+
}
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
logger.error(f"Error processing URL: {str(e)}", exc_info=True)
|
| 192 |
+
raise HTTPException(
|
| 193 |
+
status_code=500,
|
| 194 |
+
detail=f"Error processing URL: {str(e)}"
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
@app.get("/health", summary="Health check endpoint", tags=["Monitoring"])
|
| 198 |
+
def health_check():
|
| 199 |
+
"""
|
| 200 |
+
Health check endpoint for monitoring the API status.
|
| 201 |
+
|
| 202 |
+
Returns a simple status message indicating the API is healthy.
|
| 203 |
+
"""
|
| 204 |
+
return {"status": "healthy", "timestamp": time.time()}
|
| 205 |
+
|
| 206 |
+
# Run the server directly if the file is executed
|
| 207 |
+
if __name__ == "__main__":
|
| 208 |
+
logger.info("Starting Image Extractor API server")
|
| 209 |
+
uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)
|
image_extractor.py
ADDED
|
@@ -0,0 +1,390 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Image Extractor Module
|
| 3 |
+
|
| 4 |
+
This module extracts high-resolution product images and measurements from web pages.
|
| 5 |
+
Designed primarily for IKEA product pages but can be extended for other sites.
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import uuid
|
| 9 |
+
import re
|
| 10 |
+
import os
|
| 11 |
+
import logging
|
| 12 |
+
from typing import Dict, Any, Optional, List, Tuple
|
| 13 |
+
from dataclasses import dataclass, field
|
| 14 |
+
|
| 15 |
+
import requests
|
| 16 |
+
from bs4 import BeautifulSoup
|
| 17 |
+
from PIL import Image
|
| 18 |
+
from io import BytesIO
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# Configure logging
|
| 22 |
+
logging.basicConfig(
|
| 23 |
+
level=logging.INFO,
|
| 24 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 25 |
+
)
|
| 26 |
+
logger = logging.getLogger(__name__)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class ImageInfo:
|
| 31 |
+
"""Class for storing image information"""
|
| 32 |
+
url: str
|
| 33 |
+
alt: str = ""
|
| 34 |
+
type: str = "unknown"
|
| 35 |
+
path: Optional[str] = None
|
| 36 |
+
id: Optional[str] = None
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
@dataclass
|
| 40 |
+
class ExtractionResult:
|
| 41 |
+
"""Class for storing the results of a webpage extraction"""
|
| 42 |
+
request_id: str
|
| 43 |
+
images: Dict[str, ImageInfo] = field(default_factory=dict)
|
| 44 |
+
measurements: Dict[str, str] = field(default_factory=dict)
|
| 45 |
+
materials: Dict[str, str] = field(default_factory=dict)
|
| 46 |
+
output_dir: Optional[str] = None
|
| 47 |
+
|
| 48 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 49 |
+
"""Convert the extraction result to a dictionary"""
|
| 50 |
+
images_dict = {
|
| 51 |
+
img_id: {
|
| 52 |
+
"id": img_id,
|
| 53 |
+
"url": img_info.url,
|
| 54 |
+
"alt": img_info.alt,
|
| 55 |
+
"type": img_info.type,
|
| 56 |
+
"path": img_info.path
|
| 57 |
+
} for img_id, img_info in self.images.items()
|
| 58 |
+
}
|
| 59 |
+
|
| 60 |
+
return {
|
| 61 |
+
"request_id": self.request_id,
|
| 62 |
+
"images": images_dict,
|
| 63 |
+
"measurements": self.measurements,
|
| 64 |
+
"materials": self.materials,
|
| 65 |
+
"output_dir": self.output_dir
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class SrcsetParser:
|
| 70 |
+
"""Helper class for parsing srcset attributes from HTML img tags"""
|
| 71 |
+
|
| 72 |
+
@staticmethod
|
| 73 |
+
def parse_srcset(srcset: str) -> List[Dict[str, Any]]:
|
| 74 |
+
"""
|
| 75 |
+
Parse a srcset attribute into a structured list of image URLs and descriptors.
|
| 76 |
+
|
| 77 |
+
Args:
|
| 78 |
+
srcset: The srcset attribute from an img tag
|
| 79 |
+
|
| 80 |
+
Returns:
|
| 81 |
+
List of dictionaries containing parsed srcset components
|
| 82 |
+
"""
|
| 83 |
+
if not srcset:
|
| 84 |
+
return []
|
| 85 |
+
|
| 86 |
+
results = []
|
| 87 |
+
srcset_parts = [part.strip() for part in srcset.split(',')]
|
| 88 |
+
|
| 89 |
+
for part in srcset_parts:
|
| 90 |
+
parts = part.split()
|
| 91 |
+
if len(parts) < 2:
|
| 92 |
+
continue
|
| 93 |
+
|
| 94 |
+
url = parts[0]
|
| 95 |
+
descriptor = parts[1]
|
| 96 |
+
|
| 97 |
+
try:
|
| 98 |
+
width = int(re.search(r'\d+', descriptor).group(0)) if re.search(r'\d+', descriptor) else 0
|
| 99 |
+
results.append({"url": url, "descriptor": descriptor, "width": width})
|
| 100 |
+
except (AttributeError, ValueError):
|
| 101 |
+
continue
|
| 102 |
+
|
| 103 |
+
return results
|
| 104 |
+
|
| 105 |
+
@classmethod
|
| 106 |
+
def extract_f_xl_image(cls, srcset: str) -> Optional[str]:
|
| 107 |
+
"""
|
| 108 |
+
Extract specifically the image URL with f=xl 900w from a srcset attribute.
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
srcset: The srcset attribute from an img tag
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
The URL with f=xl 900w descriptor or None if not found
|
| 115 |
+
"""
|
| 116 |
+
if not srcset:
|
| 117 |
+
return None
|
| 118 |
+
|
| 119 |
+
srcset_entries = cls.parse_srcset(srcset)
|
| 120 |
+
|
| 121 |
+
# First, look for f=xl with 900w
|
| 122 |
+
for entry in srcset_entries:
|
| 123 |
+
if "f=xl" in entry["url"] and entry["descriptor"] == "900w":
|
| 124 |
+
return entry["url"]
|
| 125 |
+
|
| 126 |
+
# If not found, try any 900w image
|
| 127 |
+
for entry in srcset_entries:
|
| 128 |
+
if entry["descriptor"] == "900w":
|
| 129 |
+
return entry["url"]
|
| 130 |
+
|
| 131 |
+
# Finally, fall back to highest resolution
|
| 132 |
+
if srcset_entries:
|
| 133 |
+
srcset_entries.sort(key=lambda x: x["width"], reverse=True)
|
| 134 |
+
return srcset_entries[0]["url"]
|
| 135 |
+
|
| 136 |
+
return None
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
class ImageDownloader:
|
| 140 |
+
"""Helper class for downloading images"""
|
| 141 |
+
|
| 142 |
+
@staticmethod
|
| 143 |
+
def download_image(image_url: str, save_path: str) -> Optional[str]:
|
| 144 |
+
"""
|
| 145 |
+
Download an image from URL and save it to disk.
|
| 146 |
+
|
| 147 |
+
Args:
|
| 148 |
+
image_url: URL of the image to download
|
| 149 |
+
save_path: Path where the image will be saved
|
| 150 |
+
|
| 151 |
+
Returns:
|
| 152 |
+
The path to the saved image or None if download failed
|
| 153 |
+
"""
|
| 154 |
+
try:
|
| 155 |
+
# Create directory if it doesn't exist
|
| 156 |
+
os.makedirs(os.path.dirname(save_path), exist_ok=True)
|
| 157 |
+
|
| 158 |
+
# Get the image content
|
| 159 |
+
response = requests.get(image_url, timeout=30)
|
| 160 |
+
response.raise_for_status()
|
| 161 |
+
|
| 162 |
+
# Save the image
|
| 163 |
+
img = Image.open(BytesIO(response.content))
|
| 164 |
+
img.save(save_path)
|
| 165 |
+
|
| 166 |
+
logger.info(f"Image saved to {save_path}")
|
| 167 |
+
return save_path
|
| 168 |
+
except requests.exceptions.RequestException as e:
|
| 169 |
+
logger.error(f"Error downloading image: {e}")
|
| 170 |
+
return None
|
| 171 |
+
except IOError as e:
|
| 172 |
+
logger.error(f"Error saving image: {e}")
|
| 173 |
+
return None
|
| 174 |
+
except Exception as e:
|
| 175 |
+
logger.error(f"Unexpected error while downloading image: {e}")
|
| 176 |
+
return None
|
| 177 |
+
|
| 178 |
+
|
| 179 |
+
class WebPageFetcher:
|
| 180 |
+
"""Helper class for fetching web pages"""
|
| 181 |
+
|
| 182 |
+
DEFAULT_HEADERS = {
|
| 183 |
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36"
|
| 184 |
+
}
|
| 185 |
+
|
| 186 |
+
@classmethod
|
| 187 |
+
def fetch_page(cls, url: str) -> Tuple[str, BeautifulSoup]:
|
| 188 |
+
"""
|
| 189 |
+
Fetch a web page and return its content as text and parsed BeautifulSoup.
|
| 190 |
+
|
| 191 |
+
Args:
|
| 192 |
+
url: The URL to fetch
|
| 193 |
+
|
| 194 |
+
Returns:
|
| 195 |
+
Tuple containing (raw_html, parsed_soup)
|
| 196 |
+
|
| 197 |
+
Raises:
|
| 198 |
+
requests.exceptions.RequestException: If the request fails
|
| 199 |
+
"""
|
| 200 |
+
logger.info(f"Fetching page: {url}")
|
| 201 |
+
response = requests.get(url, headers=cls.DEFAULT_HEADERS, timeout=30)
|
| 202 |
+
response.raise_for_status()
|
| 203 |
+
html = response.text
|
| 204 |
+
|
| 205 |
+
# Parse HTML with BeautifulSoup
|
| 206 |
+
soup = BeautifulSoup(html, 'html.parser')
|
| 207 |
+
return html, soup
|
| 208 |
+
|
| 209 |
+
|
| 210 |
+
class ProductExtractor:
|
| 211 |
+
"""Main class for extracting product information"""
|
| 212 |
+
|
| 213 |
+
def __init__(self):
|
| 214 |
+
self.srcset_parser = SrcsetParser()
|
| 215 |
+
self.image_downloader = ImageDownloader()
|
| 216 |
+
|
| 217 |
+
def extract_images_from_url(self, url: str) -> ExtractionResult:
|
| 218 |
+
"""
|
| 219 |
+
Extract images with preference for f=xl 900w versions from a URL.
|
| 220 |
+
|
| 221 |
+
Args:
|
| 222 |
+
url: The URL to extract images from
|
| 223 |
+
|
| 224 |
+
Returns:
|
| 225 |
+
ExtractionResult object with extracted image information
|
| 226 |
+
|
| 227 |
+
Raises:
|
| 228 |
+
requests.exceptions.RequestException: If the request fails
|
| 229 |
+
ValueError: If the HTML cannot be parsed correctly
|
| 230 |
+
"""
|
| 231 |
+
try:
|
| 232 |
+
logger.info(f"Extracting images from: {url}")
|
| 233 |
+
|
| 234 |
+
# Fetch the HTML content
|
| 235 |
+
_, soup = WebPageFetcher.fetch_page(url)
|
| 236 |
+
|
| 237 |
+
# Generate a UUID for this request
|
| 238 |
+
request_uuid = str(uuid.uuid4())
|
| 239 |
+
logger.info(f"Generated request ID: {request_uuid}")
|
| 240 |
+
|
| 241 |
+
# Initialize result
|
| 242 |
+
result = ExtractionResult(request_id=request_uuid)
|
| 243 |
+
|
| 244 |
+
# Extract images
|
| 245 |
+
self._extract_main_product_image(soup, result, request_uuid)
|
| 246 |
+
self._extract_measurement_image(soup, result, request_uuid)
|
| 247 |
+
|
| 248 |
+
# If no specific images found, try general approach
|
| 249 |
+
if not result.images:
|
| 250 |
+
self._extract_images_general_approach(soup, result, request_uuid)
|
| 251 |
+
|
| 252 |
+
# Extract measurements
|
| 253 |
+
self._extract_measurements(soup, result)
|
| 254 |
+
|
| 255 |
+
logger.info(f"Total images found: {len(result.images)}")
|
| 256 |
+
logger.info(f"Measurements extracted: {result.measurements}")
|
| 257 |
+
return result
|
| 258 |
+
|
| 259 |
+
except requests.exceptions.RequestException as e:
|
| 260 |
+
logger.error(f"Error fetching URL: {e}")
|
| 261 |
+
raise
|
| 262 |
+
except Exception as e:
|
| 263 |
+
logger.error(f"Error extracting images: {e}")
|
| 264 |
+
raise
|
| 265 |
+
|
| 266 |
+
def _extract_main_product_image(self, soup: BeautifulSoup, result: ExtractionResult, request_uuid: str) -> None:
|
| 267 |
+
"""Extract the main product image"""
|
| 268 |
+
main_image_element = soup.select_one('div[data-type="MAIN_PRODUCT_IMAGE"] img.pip-image')
|
| 269 |
+
if main_image_element and main_image_element.get('srcset'):
|
| 270 |
+
srcset = main_image_element.get('srcset')
|
| 271 |
+
target_url = self.srcset_parser.extract_f_xl_image(srcset)
|
| 272 |
+
if target_url:
|
| 273 |
+
logger.info(f"Found main product image: {target_url}")
|
| 274 |
+
image_id = f"{request_uuid}-main"
|
| 275 |
+
result.images[image_id] = ImageInfo(
|
| 276 |
+
id=image_id,
|
| 277 |
+
url=target_url,
|
| 278 |
+
alt=main_image_element.get('alt', ''),
|
| 279 |
+
type="main"
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
def _extract_measurement_image(self, soup: BeautifulSoup, result: ExtractionResult, request_uuid: str) -> None:
|
| 283 |
+
"""Extract the measurement illustration image"""
|
| 284 |
+
measurement_image_element = soup.select_one('div[data-type="MEASUREMENT_ILLUSTRATION"] img.pip-image')
|
| 285 |
+
if measurement_image_element and measurement_image_element.get('srcset'):
|
| 286 |
+
srcset = measurement_image_element.get('srcset')
|
| 287 |
+
target_url = self.srcset_parser.extract_f_xl_image(srcset)
|
| 288 |
+
if target_url:
|
| 289 |
+
logger.info(f"Found measurement image: {target_url}")
|
| 290 |
+
image_id = f"{request_uuid}-measurement"
|
| 291 |
+
result.images[image_id] = ImageInfo(
|
| 292 |
+
id=image_id,
|
| 293 |
+
url=target_url,
|
| 294 |
+
alt=measurement_image_element.get('alt', ''),
|
| 295 |
+
type="measurement"
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
def _extract_images_general_approach(self, soup: BeautifulSoup, result: ExtractionResult, request_uuid: str) -> None:
|
| 299 |
+
"""Extract images using a more general approach"""
|
| 300 |
+
logger.info("No specific images found, trying general approach...")
|
| 301 |
+
for i, img in enumerate(soup.select('img[srcset]')):
|
| 302 |
+
srcset = img.get('srcset')
|
| 303 |
+
target_url = self.srcset_parser.extract_f_xl_image(srcset)
|
| 304 |
+
if target_url:
|
| 305 |
+
img_type = self._determine_image_type(img)
|
| 306 |
+
logger.info(f"Found {img_type} image: {target_url}")
|
| 307 |
+
image_id = f"{request_uuid}-{img_type}-{i}"
|
| 308 |
+
result.images[image_id] = ImageInfo(
|
| 309 |
+
id=image_id,
|
| 310 |
+
url=target_url,
|
| 311 |
+
alt=img.get('alt', ''),
|
| 312 |
+
type=img_type
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
def _determine_image_type(self, img_element: BeautifulSoup) -> str:
|
| 316 |
+
"""Determine the type of image based on its context"""
|
| 317 |
+
parent_html = str(img_element.parent.parent)
|
| 318 |
+
if "MAIN_PRODUCT_IMAGE" in parent_html or "main" in parent_html.lower():
|
| 319 |
+
return "main"
|
| 320 |
+
elif "MEASUREMENT" in parent_html or "measurement" in parent_html.lower():
|
| 321 |
+
return "measurement"
|
| 322 |
+
return "unknown"
|
| 323 |
+
|
| 324 |
+
def _extract_measurements(self, soup: BeautifulSoup, result: ExtractionResult) -> None:
|
| 325 |
+
"""Extract product measurements"""
|
| 326 |
+
dimensions_ul = soup.select_one('ul.pip-product-dimensions__dimensions-container')
|
| 327 |
+
if dimensions_ul:
|
| 328 |
+
for li in dimensions_ul.select('li.pip-product-dimensions__measurement-wrapper'):
|
| 329 |
+
label_span = li.select_one('span.pip-product-dimensions__measurement-name')
|
| 330 |
+
if label_span:
|
| 331 |
+
label = label_span.get_text(strip=True).replace(":", "")
|
| 332 |
+
full_text = li.get_text(strip=True)
|
| 333 |
+
value = full_text.replace(label_span.get_text(), '').strip()
|
| 334 |
+
result.measurements[label.lower()] = value
|
| 335 |
+
|
| 336 |
+
def process_product_page(self, url: str, output_dir: Optional[str] = None) -> Dict[str, Any]:
|
| 337 |
+
"""
|
| 338 |
+
Process a product page to extract and save high-resolution images.
|
| 339 |
+
|
| 340 |
+
Args:
|
| 341 |
+
url: The product page URL
|
| 342 |
+
output_dir: Optional custom output directory
|
| 343 |
+
|
| 344 |
+
Returns:
|
| 345 |
+
Dictionary with paths to downloaded images and other product information
|
| 346 |
+
"""
|
| 347 |
+
# Extract images and measurements
|
| 348 |
+
extraction_result = self.extract_images_from_url(url)
|
| 349 |
+
|
| 350 |
+
# Create a directory for the images using the request ID
|
| 351 |
+
if not output_dir:
|
| 352 |
+
output_dir = f"output/{extraction_result.request_id}"
|
| 353 |
+
|
| 354 |
+
extraction_result.output_dir = output_dir
|
| 355 |
+
|
| 356 |
+
# Process all extracted images
|
| 357 |
+
downloaded_images = {}
|
| 358 |
+
|
| 359 |
+
for image_id, image_info in extraction_result.images.items():
|
| 360 |
+
# Determine filename based on image type
|
| 361 |
+
image_type = image_info.type
|
| 362 |
+
file_ext = os.path.splitext(image_info.url.split('?')[0])[1] or '.jpg'
|
| 363 |
+
filename = f"{image_type}{file_ext}"
|
| 364 |
+
|
| 365 |
+
# Download the image
|
| 366 |
+
save_path = os.path.join(output_dir, filename)
|
| 367 |
+
image_path = self.image_downloader.download_image(image_info.url, save_path)
|
| 368 |
+
|
| 369 |
+
if image_path:
|
| 370 |
+
image_info.path = image_path
|
| 371 |
+
downloaded_images[image_type] = {
|
| 372 |
+
'id': image_id,
|
| 373 |
+
'path': image_path,
|
| 374 |
+
'url': image_info.url,
|
| 375 |
+
'alt': image_info.alt,
|
| 376 |
+
'type': image_type
|
| 377 |
+
}
|
| 378 |
+
|
| 379 |
+
logger.info(f"Images downloaded to directory: {output_dir}")
|
| 380 |
+
|
| 381 |
+
return extraction_result.to_dict()
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
# Create a singleton instance for easy import
|
| 385 |
+
extractor = ProductExtractor()
|
| 386 |
+
|
| 387 |
+
# Export the main functions for API use
|
| 388 |
+
extract_images_from_url = extractor.extract_images_from_url
|
| 389 |
+
process_product_page = extractor.process_product_page
|
| 390 |
+
download_image = ImageDownloader.download_image
|