Spaces:
Running
on
T4
Running
on
T4
sparkleman
commited on
Commit
·
94c4923
1
Parent(s):
664ff1c
UPDATE: Remove <think> tag in content & handle EOS token
Browse files
app.py
CHANGED
|
@@ -44,6 +44,8 @@ from fastapi import FastAPI, HTTPException
|
|
| 44 |
from fastapi.responses import StreamingResponse
|
| 45 |
from fastapi.middleware.cors import CORSMiddleware
|
| 46 |
from fastapi.staticfiles import StaticFiles
|
|
|
|
|
|
|
| 47 |
|
| 48 |
from api_types import (
|
| 49 |
ChatMessage,
|
|
@@ -54,7 +56,7 @@ from api_types import (
|
|
| 54 |
ChatCompletionChoice,
|
| 55 |
ChatCompletionMessage,
|
| 56 |
)
|
| 57 |
-
from utils import cleanMessages, parse_think_response
|
| 58 |
|
| 59 |
|
| 60 |
class ModelStorage:
|
|
@@ -159,6 +161,7 @@ app.add_middleware(
|
|
| 159 |
allow_methods=["*"],
|
| 160 |
allow_headers=["*"],
|
| 161 |
)
|
|
|
|
| 162 |
|
| 163 |
|
| 164 |
async def runPrefill(
|
|
@@ -185,7 +188,6 @@ def generate(
|
|
| 185 |
out,
|
| 186 |
model_tokens: List[int],
|
| 187 |
model_state,
|
| 188 |
-
stops=["\n\n"],
|
| 189 |
max_tokens=2048,
|
| 190 |
):
|
| 191 |
args = PIPELINE_ARGS(
|
|
@@ -212,18 +214,29 @@ def generate(
|
|
| 212 |
out, temperature=args.temperature, top_p=args.top_p
|
| 213 |
)
|
| 214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
out, model_state = MODEL_STORAGE[request.model].model.forward(
|
| 216 |
[token], model_state
|
| 217 |
)
|
| 218 |
-
model_tokens.append(token)
|
| 219 |
|
| 220 |
-
|
| 221 |
|
| 222 |
if token in request.stop_tokens:
|
| 223 |
yield {
|
| 224 |
"content": "",
|
| 225 |
"tokens": out_tokens[out_last:],
|
| 226 |
-
"finish_reason": "stop",
|
| 227 |
"state": model_state,
|
| 228 |
}
|
| 229 |
|
|
@@ -231,6 +244,8 @@ def generate(
|
|
| 231 |
gc.collect()
|
| 232 |
return
|
| 233 |
|
|
|
|
|
|
|
| 234 |
for xxx in occurrence:
|
| 235 |
occurrence[xxx] *= request.penalty_decay
|
| 236 |
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
|
|
@@ -243,13 +258,13 @@ def generate(
|
|
| 243 |
output_cache.append(tmp)
|
| 244 |
output_cache_str = "".join(output_cache)
|
| 245 |
|
| 246 |
-
for stop_words in
|
| 247 |
if stop_words in output_cache_str:
|
| 248 |
|
| 249 |
yield {
|
| 250 |
"content": tmp.replace(stop_words, ""),
|
| 251 |
"tokens": out_tokens[out_last:],
|
| 252 |
-
"finish_reason": "stop",
|
| 253 |
"state": model_state,
|
| 254 |
}
|
| 255 |
|
|
@@ -365,7 +380,7 @@ async def chatResponseStream(
|
|
| 365 |
createTimestamp = int(time.time())
|
| 366 |
|
| 367 |
prompt = (
|
| 368 |
-
f"{cleanMessages(request.messages)}\n\nAssistant:{' <think' if enableReasoning else ''}"
|
| 369 |
if request.prompt == None
|
| 370 |
else request.prompt.strip()
|
| 371 |
)
|
|
@@ -415,7 +430,7 @@ async def chatResponseStream(
|
|
| 415 |
buffer.append("<think")
|
| 416 |
|
| 417 |
streamConfig = {
|
| 418 |
-
"isChecking": False,
|
| 419 |
"fullTextCursor": 0,
|
| 420 |
"in_think": False,
|
| 421 |
"cacheStr": "",
|
|
|
|
| 44 |
from fastapi.responses import StreamingResponse
|
| 45 |
from fastapi.middleware.cors import CORSMiddleware
|
| 46 |
from fastapi.staticfiles import StaticFiles
|
| 47 |
+
from fastapi.middleware.gzip import GZipMiddleware
|
| 48 |
+
|
| 49 |
|
| 50 |
from api_types import (
|
| 51 |
ChatMessage,
|
|
|
|
| 56 |
ChatCompletionChoice,
|
| 57 |
ChatCompletionMessage,
|
| 58 |
)
|
| 59 |
+
from utils import cleanMessages, parse_think_response, remove_nested_think_tags_stack
|
| 60 |
|
| 61 |
|
| 62 |
class ModelStorage:
|
|
|
|
| 161 |
allow_methods=["*"],
|
| 162 |
allow_headers=["*"],
|
| 163 |
)
|
| 164 |
+
app.add_middleware(GZipMiddleware, minimum_size=1000, compresslevel=5)
|
| 165 |
|
| 166 |
|
| 167 |
async def runPrefill(
|
|
|
|
| 188 |
out,
|
| 189 |
model_tokens: List[int],
|
| 190 |
model_state,
|
|
|
|
| 191 |
max_tokens=2048,
|
| 192 |
):
|
| 193 |
args = PIPELINE_ARGS(
|
|
|
|
| 214 |
out, temperature=args.temperature, top_p=args.top_p
|
| 215 |
)
|
| 216 |
|
| 217 |
+
if token == 0 and token in request.stop_tokens:
|
| 218 |
+
yield {
|
| 219 |
+
"content": "",
|
| 220 |
+
"tokens": out_tokens[out_last:],
|
| 221 |
+
"finish_reason": "stop:token:0",
|
| 222 |
+
"state": model_state,
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
del out
|
| 226 |
+
gc.collect()
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
out, model_state = MODEL_STORAGE[request.model].model.forward(
|
| 230 |
[token], model_state
|
| 231 |
)
|
|
|
|
| 232 |
|
| 233 |
+
model_tokens.append(token)
|
| 234 |
|
| 235 |
if token in request.stop_tokens:
|
| 236 |
yield {
|
| 237 |
"content": "",
|
| 238 |
"tokens": out_tokens[out_last:],
|
| 239 |
+
"finish_reason": f"stop:token:{token}",
|
| 240 |
"state": model_state,
|
| 241 |
}
|
| 242 |
|
|
|
|
| 244 |
gc.collect()
|
| 245 |
return
|
| 246 |
|
| 247 |
+
out_tokens.append(token)
|
| 248 |
+
|
| 249 |
for xxx in occurrence:
|
| 250 |
occurrence[xxx] *= request.penalty_decay
|
| 251 |
occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0)
|
|
|
|
| 258 |
output_cache.append(tmp)
|
| 259 |
output_cache_str = "".join(output_cache)
|
| 260 |
|
| 261 |
+
for stop_words in request.stop:
|
| 262 |
if stop_words in output_cache_str:
|
| 263 |
|
| 264 |
yield {
|
| 265 |
"content": tmp.replace(stop_words, ""),
|
| 266 |
"tokens": out_tokens[out_last:],
|
| 267 |
+
"finish_reason": f"stop:words:{stop_words}",
|
| 268 |
"state": model_state,
|
| 269 |
}
|
| 270 |
|
|
|
|
| 380 |
createTimestamp = int(time.time())
|
| 381 |
|
| 382 |
prompt = (
|
| 383 |
+
f"{cleanMessages(request.messages,enableReasoning)}\n\nAssistant:{' <think' if enableReasoning else ''}"
|
| 384 |
if request.prompt == None
|
| 385 |
else request.prompt.strip()
|
| 386 |
)
|
|
|
|
| 430 |
buffer.append("<think")
|
| 431 |
|
| 432 |
streamConfig = {
|
| 433 |
+
"isChecking": False, # check whether is <think> tag
|
| 434 |
"fullTextCursor": 0,
|
| 435 |
"in_think": False,
|
| 436 |
"cacheStr": "",
|
utils.py
CHANGED
|
@@ -24,12 +24,37 @@ def parse_think_response(full_response: str):
|
|
| 24 |
return reasoning_content, content
|
| 25 |
|
| 26 |
|
| 27 |
-
def cleanMessages(messages: List[ChatMessage]):
|
| 28 |
promptStrList = []
|
| 29 |
|
| 30 |
for message in messages:
|
| 31 |
content = message.content.strip()
|
| 32 |
content = re.sub(r"\n+", "\n", content)
|
| 33 |
-
promptStrList.append(
|
|
|
|
|
|
|
| 34 |
|
| 35 |
return "\n\n".join(promptStrList)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
return reasoning_content, content
|
| 25 |
|
| 26 |
|
| 27 |
+
def cleanMessages(messages: List[ChatMessage], removeThinkingContent: bool = False):
|
| 28 |
promptStrList = []
|
| 29 |
|
| 30 |
for message in messages:
|
| 31 |
content = message.content.strip()
|
| 32 |
content = re.sub(r"\n+", "\n", content)
|
| 33 |
+
promptStrList.append(
|
| 34 |
+
f"{message.role.strip()}: {content if message.role!='Assistant' or not removeThinkingContent else remove_nested_think_tags_stack(content)}"
|
| 35 |
+
)
|
| 36 |
|
| 37 |
return "\n\n".join(promptStrList)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def remove_nested_think_tags_stack(text):
|
| 41 |
+
stack = []
|
| 42 |
+
result = ""
|
| 43 |
+
i = 0
|
| 44 |
+
while i < len(text):
|
| 45 |
+
if text[i : i + 7] == "<think>":
|
| 46 |
+
stack.append("<think>")
|
| 47 |
+
i += 7
|
| 48 |
+
elif text[i : i + 8] == "</think>":
|
| 49 |
+
if stack and stack[-1] == "<think>":
|
| 50 |
+
stack.pop()
|
| 51 |
+
i += 8
|
| 52 |
+
else:
|
| 53 |
+
result += text[i : i + 8]
|
| 54 |
+
i += 8
|
| 55 |
+
elif not stack:
|
| 56 |
+
result += text[i]
|
| 57 |
+
i += 1
|
| 58 |
+
else:
|
| 59 |
+
i += 1
|
| 60 |
+
return result
|