Spaces:
Sleeping
Sleeping
initial commit
Browse files
app.py
CHANGED
|
@@ -1,64 +1,185 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
-
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 3 |
+
from langchain_community.document_loaders import WebBaseLoader
|
| 4 |
+
from langchain_community.vectorstores import Chroma
|
| 5 |
+
from langchain_community.embeddings.fastembed import FastEmbedEmbeddings
|
| 6 |
+
from groq import Groq
|
| 7 |
+
from langchain_groq import ChatGroq
|
| 8 |
+
from langchain.prompts import PromptTemplate
|
| 9 |
+
from langchain_core.output_parsers import JsonOutputParser, StrOutputParser
|
| 10 |
+
import os
|
| 11 |
+
from langchain_community.tools.tavily_search import TavilySearchResults
|
| 12 |
+
from typing_extensions import TypedDict
|
| 13 |
+
from typing import List
|
| 14 |
+
from langchain.schema import Document
|
| 15 |
+
from langgraph.graph import END, StateGraph
|
| 16 |
+
|
| 17 |
+
# Environment setup
|
| 18 |
+
os.environ['TAVILY_API_KEY'] = "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"
|
| 19 |
+
|
| 20 |
+
# Model and embedding setup
|
| 21 |
+
embed_model = FastEmbedEmbeddings(model_name="BAAI/bge-base-en-v1.5")
|
| 22 |
+
llm = ChatGroq(temperature=0, model_name="Llama3-8b-8192", api_key="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")
|
| 23 |
+
|
| 24 |
+
# Load documents from URLs
|
| 25 |
+
urls = ["https://lilianweng.github.io/posts/2023-06-23-agent/",
|
| 26 |
+
"https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
|
| 27 |
+
"https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/"]
|
| 28 |
+
|
| 29 |
+
docs = [WebBaseLoader(url).load() for url in urls]
|
| 30 |
+
docs_list = [item for sublist in docs for item in sublist]
|
| 31 |
+
|
| 32 |
+
# Document splitting
|
| 33 |
+
text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(chunk_size=512, chunk_overlap=0)
|
| 34 |
+
doc_splits = text_splitter.split_documents(docs_list)
|
| 35 |
+
|
| 36 |
+
# Vectorstore setup
|
| 37 |
+
vectorstore = Chroma.from_documents(documents=doc_splits, embedding=embed_model, collection_name="local-rag")
|
| 38 |
+
retriever = vectorstore.as_retriever(search_kwargs={"k": 2})
|
| 39 |
+
|
| 40 |
+
# Prompt templates
|
| 41 |
+
question_router_prompt = PromptTemplate(
|
| 42 |
+
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are an expert at routing a
|
| 43 |
+
user question to a vectorstore or web search. Use the vectorstore for questions on LLM agents,
|
| 44 |
+
prompt engineering, and adversarial attacks. Otherwise, use web-search. Give a binary choice 'web_search'
|
| 45 |
+
or 'vectorstore' based on the question. Return a JSON with a single key 'datasource' and no preamble.
|
| 46 |
+
Question to route: {question} <|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
|
| 47 |
+
input_variables=["question"],
|
| 48 |
+
)
|
| 49 |
+
|
| 50 |
+
question_router = question_router_prompt | llm | JsonOutputParser()
|
| 51 |
+
|
| 52 |
+
rag_chain_prompt = PromptTemplate(
|
| 53 |
+
template="""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are an assistant for question-answering tasks.
|
| 54 |
+
Use the following pieces of retrieved context to answer the question concisely. <|eot_id|><|start_header_id|>user<|end_header_id|>
|
| 55 |
+
Question: {question}
|
| 56 |
+
Context: {context}
|
| 57 |
+
Answer: <|eot_id|><|start_header_id|>assistant<|end_header_id|>""",
|
| 58 |
+
input_variables=["question", "document"],
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# Chain
|
| 62 |
+
rag_chain = rag_chain_prompt | llm | StrOutputParser()
|
| 63 |
+
|
| 64 |
+
# Web search tool
|
| 65 |
+
web_search_tool = TavilySearchResults(k=3)
|
| 66 |
+
|
| 67 |
+
# Workflow functions
|
| 68 |
+
def retrieve(state):
|
| 69 |
+
question = state["question"]
|
| 70 |
+
documents = retriever.invoke(question)
|
| 71 |
+
return {"documents": documents, "question": question}
|
| 72 |
+
|
| 73 |
+
def generate(state):
|
| 74 |
+
question = state["question"]
|
| 75 |
+
documents = state["documents"]
|
| 76 |
+
generation = rag_chain.invoke({"context": documents, "question": question})
|
| 77 |
+
return {"documents": documents, "question": question, "generation": generation}
|
| 78 |
+
|
| 79 |
+
def route_question(state):
|
| 80 |
+
question = state["question"]
|
| 81 |
+
source = question_router.invoke({"question": question})
|
| 82 |
+
return "websearch" if source['datasource'] == 'web_search' else "vectorstore"
|
| 83 |
+
|
| 84 |
+
def web_search(state):
|
| 85 |
+
question = state["question"]
|
| 86 |
+
docs = web_search_tool.invoke({"query": question})
|
| 87 |
+
web_results = Document(page_content="\n".join([d["content"] for d in docs]))
|
| 88 |
+
documents = state.get("documents", [])
|
| 89 |
+
documents.append(web_results)
|
| 90 |
+
return {"documents": documents, "question": question}
|
| 91 |
+
|
| 92 |
+
workflow = StateGraph(TypedDict("GraphState", {"question": str, "generation": str, "documents": List[Document]}))
|
| 93 |
+
|
| 94 |
+
# Define the nodes
|
| 95 |
+
workflow.add_node("websearch", web_search)
|
| 96 |
+
workflow.add_node("retrieve", retrieve)
|
| 97 |
+
workflow.add_node("generate", generate)
|
| 98 |
+
|
| 99 |
+
workflow.set_conditional_entry_point(
|
| 100 |
+
route_question,
|
| 101 |
+
{
|
| 102 |
+
"websearch": "websearch",
|
| 103 |
+
"vectorstore": "retrieve",
|
| 104 |
+
},
|
| 105 |
)
|
| 106 |
|
| 107 |
+
workflow.add_edge("retrieve", "generate")
|
| 108 |
+
workflow.add_edge("websearch", "generate")
|
| 109 |
+
|
| 110 |
+
# Compile the app
|
| 111 |
+
app = workflow.compile()
|
| 112 |
+
|
| 113 |
+
# Gradio integration with Chatbot
|
| 114 |
+
|
| 115 |
+
# Updated ask_question_conversation function
|
| 116 |
+
def ask_question_conversation(history, question):
|
| 117 |
+
inputs = {"question": question}
|
| 118 |
+
generation_result = None
|
| 119 |
+
|
| 120 |
+
# Run the workflow and get the generation result
|
| 121 |
+
for output in app.stream(inputs):
|
| 122 |
+
for key, value in output.items():
|
| 123 |
+
generation_result = value.get("generation", "No generation found")
|
| 124 |
+
|
| 125 |
+
# Append the new question and response to the history
|
| 126 |
+
history.append((question, generation_result))
|
| 127 |
+
|
| 128 |
+
# Return the updated history to chatbot and clear the question textbox
|
| 129 |
+
return history, ""
|
| 130 |
+
|
| 131 |
+
# Gradio conversation UI
|
| 132 |
+
'''
|
| 133 |
+
with gr.Blocks() as demo:
|
| 134 |
+
gr.Markdown("🤖 Multi-Agent Knowledge Assistant: Powered by RAG for Smart Answers!")
|
| 135 |
+
|
| 136 |
+
chatbot = gr.Chatbot(label="Chat with AI Assistant")
|
| 137 |
+
question = gr.Textbox(label="Your Question", placeholder="Ask your question here...")
|
| 138 |
+
clear = gr.Button("Clear Conversation")
|
| 139 |
+
|
| 140 |
+
# Submit action for the question textbox
|
| 141 |
+
question.submit(ask_question_conversation, [chatbot, question], [chatbot, question])
|
| 142 |
+
clear.click(lambda: [], None, chatbot) # Clear conversation history
|
| 143 |
+
|
| 144 |
+
demo.launch()
|
| 145 |
+
'''
|
| 146 |
+
|
| 147 |
+
with gr.Blocks(css="""
|
| 148 |
+
#title {
|
| 149 |
+
font-size: 26px;
|
| 150 |
+
font-weight: bold;
|
| 151 |
+
text-align: center;
|
| 152 |
+
color: #4A90E2;
|
| 153 |
+
}
|
| 154 |
+
#subtitle {
|
| 155 |
+
font-size: 18px;
|
| 156 |
+
text-align: center;
|
| 157 |
+
margin-top: -15px;
|
| 158 |
+
color: #7D7D7D;
|
| 159 |
+
}
|
| 160 |
+
.gr-chatbot, .gr-textbox, .gr-button {
|
| 161 |
+
max-width: 600px;
|
| 162 |
+
margin: 0 auto;
|
| 163 |
+
}
|
| 164 |
+
.gr-chatbot {
|
| 165 |
+
height: 400px;
|
| 166 |
+
}
|
| 167 |
+
.gr-button {
|
| 168 |
+
display: block;
|
| 169 |
+
width: 100px;
|
| 170 |
+
margin: 20px auto;
|
| 171 |
+
background-color: #4A90E2;
|
| 172 |
+
color: white;
|
| 173 |
+
}
|
| 174 |
+
""") as demo:
|
| 175 |
+
gr.Markdown("<div id='title'>🤖 Multi-Agent Knowledge Assistant: Powered by RAG for Smart Answers!</div>")
|
| 176 |
+
|
| 177 |
+
chatbot = gr.Chatbot(label="Chat with AI Assistant")
|
| 178 |
+
question = gr.Textbox(label="Ask a Question", placeholder="Type your question here...", lines=1)
|
| 179 |
+
clear = gr.Button("Clear Chat")
|
| 180 |
+
|
| 181 |
+
# Submit action for the question textbox
|
| 182 |
+
question.submit(ask_question_conversation, [chatbot, question], [chatbot, question])
|
| 183 |
+
clear.click(lambda: [], None, chatbot) # Clear conversation history
|
| 184 |
|
| 185 |
+
demo.launch()
|
|
|