Spaces:
Runtime error
Runtime error
Commit
·
4be7ef1
1
Parent(s):
1e6d524
First attempt at porting to diffusers
Browse files
app.py
CHANGED
|
@@ -4,182 +4,103 @@ import gradio as gr
|
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from annotator.openpose import apply_openpose
|
| 13 |
-
|
| 14 |
-
from cldm.model import create_model, load_state_dict
|
| 15 |
-
|
| 16 |
-
from huggingface_hub import hf_hub_url, cached_download
|
| 17 |
-
|
| 18 |
-
REPO_ID = "lllyasviel/ControlNet"
|
| 19 |
-
canny_checkpoint = "models/control_sd15_canny.pth"
|
| 20 |
-
scribble_checkpoint = "models/control_sd15_scribble.pth"
|
| 21 |
-
pose_checkpoint = "models/control_sd15_openpose.pth"
|
| 22 |
-
|
| 23 |
-
# REPO_ID = "webui/ControlNet-modules-safetensors"
|
| 24 |
-
# canny_checkpoint = "control_canny-fp16.safetensors"
|
| 25 |
-
# scribble_checkpoint = "control_scribble-fp16.safetensors"
|
| 26 |
-
# pose_checkpoint = "control_openpose-fp16.safetensors"
|
| 27 |
-
|
| 28 |
-
canny_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 29 |
-
canny_model.load_state_dict(load_state_dict(cached_download(
|
| 30 |
-
hf_hub_url(REPO_ID, canny_checkpoint)
|
| 31 |
-
), location='cpu'))
|
| 32 |
-
canny_model = canny_model.cuda()
|
| 33 |
-
ddim_sampler = DDIMSampler(canny_model)
|
| 34 |
-
|
| 35 |
-
pose_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 36 |
-
pose_model.load_state_dict(load_state_dict(cached_download(
|
| 37 |
-
hf_hub_url(REPO_ID, pose_checkpoint)
|
| 38 |
-
), location='cpu'))
|
| 39 |
-
pose_model = pose_model.cuda()
|
| 40 |
-
ddim_sampler_pose = DDIMSampler(pose_model)
|
| 41 |
-
|
| 42 |
-
scribble_model = create_model('./models/cldm_v15.yaml').cpu()
|
| 43 |
-
scribble_model.load_state_dict(load_state_dict(cached_download(
|
| 44 |
-
hf_hub_url(REPO_ID, scribble_checkpoint)
|
| 45 |
-
), location='cpu'))
|
| 46 |
-
scribble_model = scribble_model.cuda()
|
| 47 |
-
ddim_sampler_scribble = DDIMSampler(scribble_model)
|
| 48 |
|
| 49 |
-
save_memory = False
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
return process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold)
|
| 59 |
-
|
| 60 |
-
def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold):
|
| 61 |
-
with torch.no_grad():
|
| 62 |
-
img = resize_image(HWC3(input_image), image_resolution)
|
| 63 |
-
H, W, C = img.shape
|
| 64 |
-
|
| 65 |
-
detected_map = apply_canny(img, low_threshold, high_threshold)
|
| 66 |
-
detected_map = HWC3(detected_map)
|
| 67 |
-
|
| 68 |
-
control = torch.from_numpy(detected_map.copy()).float().cuda() / 255.0
|
| 69 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 70 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 71 |
|
| 72 |
-
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
canny_model.low_vram_shift(is_diffusing=False)
|
| 76 |
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
shape = (4, H // 8, W // 8)
|
| 80 |
-
|
| 81 |
-
if save_memory:
|
| 82 |
-
canny_model.low_vram_shift(is_diffusing=False)
|
| 83 |
-
|
| 84 |
-
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 85 |
-
shape, cond, verbose=False, eta=eta,
|
| 86 |
-
unconditional_guidance_scale=scale,
|
| 87 |
-
unconditional_conditioning=un_cond)
|
| 88 |
-
|
| 89 |
-
if save_memory:
|
| 90 |
-
canny_model.low_vram_shift(is_diffusing=False)
|
| 91 |
-
|
| 92 |
-
x_samples = canny_model.decode_first_stage(samples)
|
| 93 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 94 |
-
|
| 95 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 96 |
-
return [255 - detected_map] + results
|
| 97 |
-
|
| 98 |
-
def process_scribble(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta):
|
| 99 |
-
with torch.no_grad():
|
| 100 |
-
img = resize_image(HWC3(input_image), image_resolution)
|
| 101 |
-
H, W, C = img.shape
|
| 102 |
|
| 103 |
-
|
| 104 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
|
| 110 |
-
|
|
|
|
| 111 |
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 116 |
-
un_cond = {"c_concat": [control], "c_crossattn": [scribble_model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 117 |
-
shape = (4, H // 8, W // 8)
|
| 118 |
-
|
| 119 |
-
if save_memory:
|
| 120 |
-
scribble_model.low_vram_shift(is_diffusing=False)
|
| 121 |
-
|
| 122 |
-
samples, intermediates = ddim_sampler_scribble.sample(ddim_steps, num_samples,
|
| 123 |
-
shape, cond, verbose=False, eta=eta,
|
| 124 |
-
unconditional_guidance_scale=scale,
|
| 125 |
-
unconditional_conditioning=un_cond)
|
| 126 |
-
|
| 127 |
-
if save_memory:
|
| 128 |
-
scribble_model.low_vram_shift(is_diffusing=False)
|
| 129 |
-
|
| 130 |
-
x_samples = scribble_model.decode_first_stage(samples)
|
| 131 |
-
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 132 |
-
|
| 133 |
-
results = [x_samples[i] for i in range(num_samples)]
|
| 134 |
-
return [255 - detected_map] + results
|
| 135 |
-
|
| 136 |
-
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta):
|
| 137 |
-
with torch.no_grad():
|
| 138 |
-
input_image = HWC3(input_image)
|
| 139 |
-
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
|
| 140 |
-
detected_map = HWC3(detected_map)
|
| 141 |
-
img = resize_image(input_image, image_resolution)
|
| 142 |
-
H, W, C = img.shape
|
| 143 |
-
|
| 144 |
-
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 145 |
|
| 146 |
-
|
| 147 |
-
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 148 |
-
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 149 |
|
| 150 |
-
|
| 151 |
-
seed = random.randint(0, 65535)
|
| 152 |
-
seed_everything(seed)
|
| 153 |
|
| 154 |
-
if save_memory:
|
| 155 |
-
pose_model.low_vram_shift(is_diffusing=False)
|
| 156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
-
def create_canvas(w, h):
|
| 180 |
-
new_control_options = ["Interactive Scribble"]
|
| 181 |
-
return np.zeros(shape=(h, w, 3), dtype=np.uint8) + 255
|
| 182 |
-
|
| 183 |
|
| 184 |
block = gr.Blocks().queue()
|
| 185 |
control_task_list = [
|
|
@@ -222,52 +143,42 @@ with block:
|
|
| 222 |
[
|
| 223 |
"bird.png",
|
| 224 |
"bird",
|
| 225 |
-
"Canny Edge Map"
|
| 226 |
-
"best quality, extremely detailed",
|
| 227 |
-
'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
| 228 |
-
1,
|
| 229 |
-
512,
|
| 230 |
-
20,
|
| 231 |
-
9.0,
|
| 232 |
-
123490213,
|
| 233 |
-
0.0,
|
| 234 |
-
100,
|
| 235 |
-
200
|
| 236 |
|
| 237 |
],
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
|
| 254 |
-
],
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
|
| 270 |
-
]
|
| 271 |
]
|
| 272 |
examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold], outputs = [result_gallery], cache_examples = True, fn = process)
|
| 273 |
gr.Markdown("")
|
|
|
|
| 4 |
import numpy as np
|
| 5 |
import torch
|
| 6 |
|
| 7 |
+
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 8 |
+
from diffusers import UniPCMultistepScheduler
|
| 9 |
+
from PIL import Image
|
| 10 |
+
from controlnet_aux import OpenposeDetector
|
| 11 |
|
| 12 |
+
# Constants
|
| 13 |
+
low_threshold = 100
|
| 14 |
+
high_threshold = 200
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
|
|
|
| 16 |
|
| 17 |
+
# Models
|
| 18 |
+
controlnet_canny = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
|
| 19 |
+
pipe_canny = StableDiffusionControlNetPipeline.from_pretrained(
|
| 20 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet_canny, safety_checker=None, torch_dtype=torch.float16
|
| 21 |
+
)
|
| 22 |
+
pipe_canny.scheduler = UniPCMultistepScheduler.from_config(pipe_canny.scheduler.config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# This command loads the individual model components on GPU on-demand. So, we don't
|
| 25 |
+
# need to explicitly call pipe.to("cuda").
|
| 26 |
+
pipe_canny.enable_model_cpu_offload()
|
| 27 |
|
| 28 |
+
pipe_canny.enable_xformers_memory_efficient_attention()
|
|
|
|
| 29 |
|
| 30 |
+
# Generator seed,
|
| 31 |
+
generator = torch.manual_seed(0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
pose_model = OpenposeDetector.from_pretrained("lllyasviel/ControlNet")
|
| 34 |
+
controlnet_pose = ControlNetModel.from_pretrained(
|
| 35 |
+
"lllyasviel/sd-controlnet-openpose", torch_dtype=torch.float16
|
| 36 |
+
)
|
| 37 |
+
pipe_pose = StableDiffusionControlNetPipeline.from_pretrained(
|
| 38 |
+
"runwayml/stable-diffusion-v1-5", controlnet=controlnet_pose, safety_checker=None, torch_dtype=torch.float16
|
| 39 |
+
)
|
| 40 |
+
pipe_pose.scheduler = UniPCMultistepScheduler.from_config(pipe_pose.scheduler.config)
|
| 41 |
|
| 42 |
+
# This command loads the individual model components on GPU on-demand. So, we don't
|
| 43 |
+
# need to explicitly call pipe.to("cuda").
|
| 44 |
+
pipe_pose.enable_model_cpu_offload()
|
| 45 |
|
| 46 |
+
# xformers
|
| 47 |
+
pipe_pose.enable_xformers_memory_efficient_attention()
|
| 48 |
|
| 49 |
+
from pytorch_lightning import seed_everything
|
| 50 |
+
from util import resize_image, HWC3, apply_canny
|
| 51 |
+
from ldm.models.diffusion.ddim import DDIMSampler
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
|
| 53 |
+
from annotator.openpose import apply_openpose
|
|
|
|
|
|
|
| 54 |
|
| 55 |
+
from cldm.model import create_model, load_state_dict
|
|
|
|
|
|
|
| 56 |
|
|
|
|
|
|
|
| 57 |
|
| 58 |
+
def get_canny_filter(image):
|
| 59 |
+
if not isinstance(image, np.ndarray):
|
| 60 |
+
image = np.array(image)
|
| 61 |
+
|
| 62 |
+
image = cv2.Canny(image, low_threshold, high_threshold)
|
| 63 |
+
image = image[:
|
| 64 |
+
, :, None]
|
| 65 |
+
image = np.concatenate([image, image, image], axis=2)
|
| 66 |
+
canny_image = Image.fromarray(image)
|
| 67 |
+
return canny_image
|
| 68 |
+
|
| 69 |
+
def get_pose(image):
|
| 70 |
+
return pose_model(image)
|
| 71 |
|
| 72 |
+
def process(input_image, prompt, input_control):
|
| 73 |
+
# TODO: Add other control tasks
|
| 74 |
+
if input_control == "Scribble":
|
| 75 |
+
return process_canny(input_image, prompt)
|
| 76 |
+
elif input_control == "Pose":
|
| 77 |
+
return process_pose(input_image, prompt)
|
| 78 |
+
|
| 79 |
+
return process_canny(input_image, prompt)
|
| 80 |
+
|
| 81 |
+
def process_canny(input_image, prompt):
|
| 82 |
+
canny_image = get_canny_filter(input_image)
|
| 83 |
+
output = pipe_canny(
|
| 84 |
+
prompt,
|
| 85 |
+
canny_image,
|
| 86 |
+
generator=generator,
|
| 87 |
+
num_images_per_prompt=1,
|
| 88 |
+
num_inference_steps=20,
|
| 89 |
+
)
|
| 90 |
+
return [canny_image,output.images[0]]
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def process_pose(input_image, prompt):
|
| 94 |
+
pose_image = get_pose(input_image)
|
| 95 |
+
output = pipe_pose(
|
| 96 |
+
prompt,
|
| 97 |
+
pose_image,
|
| 98 |
+
generator=generator,
|
| 99 |
+
num_images_per_prompt=1,
|
| 100 |
+
num_inference_steps=20,
|
| 101 |
+
)
|
| 102 |
+
return [pose_image,output.images[0]]
|
| 103 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 104 |
|
| 105 |
block = gr.Blocks().queue()
|
| 106 |
control_task_list = [
|
|
|
|
| 143 |
[
|
| 144 |
"bird.png",
|
| 145 |
"bird",
|
| 146 |
+
"Canny Edge Map"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
| 148 |
],
|
| 149 |
|
| 150 |
+
# [
|
| 151 |
+
# "turtle.png",
|
| 152 |
+
# "turtle",
|
| 153 |
+
# "Scribble",
|
| 154 |
+
# "best quality, extremely detailed",
|
| 155 |
+
# 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
| 156 |
+
# 1,
|
| 157 |
+
# 512,
|
| 158 |
+
# 20,
|
| 159 |
+
# 9.0,
|
| 160 |
+
# 123490213,
|
| 161 |
+
# 0.0,
|
| 162 |
+
# 100,
|
| 163 |
+
# 200
|
| 164 |
|
| 165 |
+
# ],
|
| 166 |
+
# [
|
| 167 |
+
# "pose1.png",
|
| 168 |
+
# "Chef in the Kitchen",
|
| 169 |
+
# "Pose",
|
| 170 |
+
# "best quality, extremely detailed",
|
| 171 |
+
# 'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
|
| 172 |
+
# 1,
|
| 173 |
+
# 512,
|
| 174 |
+
# 20,
|
| 175 |
+
# 9.0,
|
| 176 |
+
# 123490213,
|
| 177 |
+
# 0.0,
|
| 178 |
+
# 100,
|
| 179 |
+
# 200
|
| 180 |
|
| 181 |
+
# ]
|
| 182 |
]
|
| 183 |
examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt, input_control, a_prompt, n_prompt, num_samples, image_resolution, ddim_steps, scale, seed, eta, low_threshold, high_threshold], outputs = [result_gallery], cache_examples = True, fn = process)
|
| 184 |
gr.Markdown("")
|