Spaces:
Runtime error
Runtime error
Commit
·
8b2a350
1
Parent(s):
f50cc97
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,6 +9,8 @@ from pytorch_lightning import seed_everything
|
|
| 9 |
from util import resize_image, HWC3, apply_canny
|
| 10 |
from ldm.models.diffusion.ddim import DDIMSampler
|
| 11 |
|
|
|
|
|
|
|
| 12 |
from cldm.model import create_model, load_state_dict
|
| 13 |
|
| 14 |
from huggingface_hub import hf_hub_url, cached_download
|
|
@@ -54,7 +56,36 @@ def process_canny(input_image, prompt, a_prompt, n_prompt, num_samples, image_re
|
|
| 54 |
results = [x_samples[i] for i in range(num_samples)]
|
| 55 |
return [255 - detected_map] + results
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
|
|
|
|
|
|
|
|
|
| 58 |
block = gr.Blocks().queue()
|
| 59 |
control_task_list = [
|
| 60 |
"Canny Edge Map",
|
|
@@ -65,7 +96,7 @@ with block:
|
|
| 65 |
with gr.Row():
|
| 66 |
with gr.Column():
|
| 67 |
input_image = gr.Image(source='upload', type="numpy")
|
| 68 |
-
input_control = gr.Dropdown(
|
| 69 |
prompt = gr.Textbox(label="Prompt")
|
| 70 |
run_button = gr.Button(label="Run")
|
| 71 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
| 9 |
from util import resize_image, HWC3, apply_canny
|
| 10 |
from ldm.models.diffusion.ddim import DDIMSampler
|
| 11 |
|
| 12 |
+
from annotator.openpose import apply_openpose
|
| 13 |
+
|
| 14 |
from cldm.model import create_model, load_state_dict
|
| 15 |
|
| 16 |
from huggingface_hub import hf_hub_url, cached_download
|
|
|
|
| 56 |
results = [x_samples[i] for i in range(num_samples)]
|
| 57 |
return [255 - detected_map] + results
|
| 58 |
|
| 59 |
+
def process_pose(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, detect_resolution, ddim_steps, scale, seed, eta):
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
input_image = HWC3(input_image)
|
| 62 |
+
detected_map, _ = apply_openpose(resize_image(input_image, detect_resolution))
|
| 63 |
+
detected_map = HWC3(detected_map)
|
| 64 |
+
img = resize_image(input_image, image_resolution)
|
| 65 |
+
H, W, C = img.shape
|
| 66 |
+
|
| 67 |
+
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
|
| 68 |
+
|
| 69 |
+
control = torch.from_numpy(detected_map.copy()).float() / 255.0
|
| 70 |
+
control = torch.stack([control for _ in range(num_samples)], dim=0)
|
| 71 |
+
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
|
| 72 |
+
|
| 73 |
+
seed_everything(seed)
|
| 74 |
+
|
| 75 |
+
cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([prompt + ', ' + a_prompt] * num_samples)]}
|
| 76 |
+
un_cond = {"c_concat": [control], "c_crossattn": [model.get_learned_conditioning([n_prompt] * num_samples)]}
|
| 77 |
+
shape = (4, H // 8, W // 8)
|
| 78 |
+
|
| 79 |
+
samples, intermediates = ddim_sampler.sample(ddim_steps, num_samples,
|
| 80 |
+
shape, cond, verbose=False, eta=eta,
|
| 81 |
+
unconditional_guidance_scale=scale,
|
| 82 |
+
unconditional_conditioning=un_cond)
|
| 83 |
+
x_samples = model.decode_first_stage(samples)
|
| 84 |
+
x_samples = (einops.rearrange(x_samples, 'b c h w -> b h w c') * 127.5 + 127.5).cpu().numpy().clip(0, 255).astype(np.uint8)
|
| 85 |
|
| 86 |
+
results = [x_samples[i] for i in range(num_samples)]
|
| 87 |
+
return [detected_map] + results
|
| 88 |
+
|
| 89 |
block = gr.Blocks().queue()
|
| 90 |
control_task_list = [
|
| 91 |
"Canny Edge Map",
|
|
|
|
| 96 |
with gr.Row():
|
| 97 |
with gr.Column():
|
| 98 |
input_image = gr.Image(source='upload', type="numpy")
|
| 99 |
+
input_control = gr.Dropdown(control_task_list, value="Canny Edge Map", label="Control Task"),
|
| 100 |
prompt = gr.Textbox(label="Prompt")
|
| 101 |
run_button = gr.Button(label="Run")
|
| 102 |
with gr.Accordion("Advanced options", open=False):
|