Spaces:
Runtime error
Runtime error
Commit
·
2f5c740
1
Parent(s):
b1d6e77
Update app.py
Browse files
app.py
CHANGED
|
@@ -11,28 +11,38 @@ device = 'cpu' # if you have a GPU
|
|
| 11 |
tokenizer = T5Tokenizer.from_pretrained('stanfordnlp/SteamSHP-flan-t5-large')
|
| 12 |
model = T5ForConditionalGeneration.from_pretrained('stanfordnlp/SteamSHP-flan-t5-large').to(device)
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 15 |
|
| 16 |
OUTPUTS_DATASET = "HuggingFaceH4/instruction-pilot-outputs-filtered"
|
| 17 |
|
| 18 |
ds = load_dataset(OUTPUTS_DATASET, split="train", use_auth_token=HF_TOKEN)
|
| 19 |
|
| 20 |
-
def process():
|
| 21 |
sample_ds = ds.shuffle().select(range(1))
|
| 22 |
sample = sample_ds[0]
|
| 23 |
prompt = sample["prompt"]
|
| 24 |
|
| 25 |
df = pd.DataFrame.from_records(sample["filtered_outputs"])
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
input_text = "POST: "+ prompt+ "\n\n RESPONSE A: Lime juice, and zest, then freeze in small quantities.\n\n RESPONSE B: Lime marmalade lol\n\n Which response is better? RESPONSE"
|
| 28 |
x = tokenizer([input_text], return_tensors='pt').input_ids.to(device)
|
| 29 |
y = model.generate(x, max_new_tokens=1)
|
| 30 |
prefered = tokenizer.batch_decode(y, skip_special_tokens=True)[0]
|
| 31 |
-
return prefered,
|
| 32 |
|
| 33 |
title = "Compare Instruction Models to see which one is more helpful"
|
| 34 |
interface = gr.Interface(fn=process,
|
| 35 |
-
inputs=[],
|
|
|
|
| 36 |
outputs=[
|
| 37 |
gr.Textbox(label = "Preferred Option"),
|
| 38 |
gr.DataFrame(label = "Model Responses")
|
|
|
|
| 11 |
tokenizer = T5Tokenizer.from_pretrained('stanfordnlp/SteamSHP-flan-t5-large')
|
| 12 |
model = T5ForConditionalGeneration.from_pretrained('stanfordnlp/SteamSHP-flan-t5-large').to(device)
|
| 13 |
|
| 14 |
+
model_list = [
|
| 15 |
+
'google/flan-t5-xxl',
|
| 16 |
+
'bigscience/bloomz-7b1',
|
| 17 |
+
'facebook/opt-iml-max-30b',
|
| 18 |
+
'allenai/tk-instruct-11b-def-pos']
|
| 19 |
+
|
| 20 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 21 |
|
| 22 |
OUTPUTS_DATASET = "HuggingFaceH4/instruction-pilot-outputs-filtered"
|
| 23 |
|
| 24 |
ds = load_dataset(OUTPUTS_DATASET, split="train", use_auth_token=HF_TOKEN)
|
| 25 |
|
| 26 |
+
def process(model_A, model_B):
|
| 27 |
sample_ds = ds.shuffle().select(range(1))
|
| 28 |
sample = sample_ds[0]
|
| 29 |
prompt = sample["prompt"]
|
| 30 |
|
| 31 |
df = pd.DataFrame.from_records(sample["filtered_outputs"])
|
| 32 |
+
response_A = df[df['model']==model_A]
|
| 33 |
+
response_B = df[df['model']==model_B]
|
| 34 |
+
|
| 35 |
|
| 36 |
input_text = "POST: "+ prompt+ "\n\n RESPONSE A: Lime juice, and zest, then freeze in small quantities.\n\n RESPONSE B: Lime marmalade lol\n\n Which response is better? RESPONSE"
|
| 37 |
x = tokenizer([input_text], return_tensors='pt').input_ids.to(device)
|
| 38 |
y = model.generate(x, max_new_tokens=1)
|
| 39 |
prefered = tokenizer.batch_decode(y, skip_special_tokens=True)[0]
|
| 40 |
+
return prefered, response_A
|
| 41 |
|
| 42 |
title = "Compare Instruction Models to see which one is more helpful"
|
| 43 |
interface = gr.Interface(fn=process,
|
| 44 |
+
inputs=[gr.Dropdown(choices=model_list, value=model_list[0], label='Model A'),
|
| 45 |
+
gr.Dropdown(choices=model_list, value=model_list[1], label='Model B')],
|
| 46 |
outputs=[
|
| 47 |
gr.Textbox(label = "Preferred Option"),
|
| 48 |
gr.DataFrame(label = "Model Responses")
|