File size: 9,015 Bytes
d1369a2
9eda2f5
 
 
d1369a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3fa801
 
 
 
 
 
 
 
d1369a2
 
 
d3fa801
d1369a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221cc42
d1369a2
 
 
 
15b45d6
9eda2f5
d1369a2
221cc42
d1369a2
 
 
15b45d6
 
 
 
d1369a2
65fefb5
 
 
 
 
 
d1369a2
65fefb5
 
f89cae0
 
 
 
8fe9801
 
d1369a2
 
 
15b45d6
d1369a2
 
 
 
 
 
 
 
 
 
 
 
65fefb5
15b45d6
d1369a2
 
 
 
 
221cc42
9eda2f5
221cc42
d3fa801
 
 
 
221cc42
d3fa801
 
 
 
 
 
 
 
221cc42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3fa801
221cc42
 
d3fa801
9eda2f5
341d615
9eda2f5
 
 
 
 
 
 
 
341d615
9eda2f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc4f4c3
9eda2f5
 
221cc42
9eda2f5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import polars as pl
from data import data_df

from types import SimpleNamespace

def filter_data_by_date_and_game_kind(data, start_date=None, end_date=None, game_kind=None):
  if start_date is not None:
    data = data.filter(pl.col('date') >= start_date)
  if end_date is not None:
    data = data.filter(pl.col('date') <= end_date)
  if game_kind is not None:
    data = data.filter(pl.col('coarse_game_kind') == game_kind)
  return data

def compute_team_games(data):
  data = (
      data
      .with_columns(
          pl.col('gameId').unique().len().over('HomeTeamNameES').alias('home_games'),
          pl.col('gameId').unique().len().over('VisitorTeamNameES').alias('visitor_games')
      )
  )
  game_data = (
      data
      .group_by('HomeTeamNameES')
      .first()
      [['HomeTeamNameES', 'home_games']]
      .rename({'HomeTeamNameES': 'team'})
      .join(
          (
              data
              .group_by('VisitorTeamNameES')
              .first()
              [['VisitorTeamNameES', 'visitor_games']]
              .rename({'VisitorTeamNameES': 'team'})
          ),
          on='team',
          how='full'
      )
      .fill_null(0)
      .with_columns(
        (pl.col('home_games')+pl.col('visitor_games')).alias('games'),
        pl.when(pl.col('team').is_null())
        .then(pl.col('team_right'))
        .otherwise(pl.col('team')).alias('team')
      )
  )


  return (
      data
      .drop('home_games', 'visitor_games')
      .join(
          game_data[['team', 'games']].rename({'games': 'home_games'}),
          left_on='HomeTeamNameES',
          right_on='team'
      )
      .join(
          game_data[['team', 'games']].rename({'games': 'visitor_games'}),
          left_on='VisitorTeamNameES',
          right_on='team'
      )
  )


def compute_pitch_stats(data, player_type, pitch_class_type, min_pitches=1):
  assert player_type in ('pitcher', 'batter')
  assert pitch_class_type in ('general', 'specific')
  id_col = 'pitId' if player_type == 'pitcher' else 'batId'
  name_col = 'pitcher_name' if player_type == 'pitcher' else 'batter_name'
  pitch_col = 'ballKind_code' if pitch_class_type == 'specific' else 'general_ballKind_code'
  pitch_name_col = 'ballKind' if pitch_class_type == 'specific' else 'general_ballKind'
  pitch_stats = (
      data
      .with_columns((pl.col('ballSpeed') / 1.609).round(1).alias('mph'))
      .group_by(id_col, pitch_col, 'pitcher_team_name_short')
      .agg(
          pl.first(name_col),
          *([pl.first('general_ballKind')] if pitch_class_type == 'specific' else []),
          pl.first(pitch_name_col),
          pl.len().alias('count'),
          pl.when(pl.col('x').is_not_null() & pl.col('y').is_not_null() & (pl.col('ballSpeed') > 0)).then('ballSpeed').mean().alias('Avg KPH'),
          pl.col('ballSpeed').max().alias('Max KPH'),
          pl.when(pl.col('x').is_not_null() & pl.col('y').is_not_null() & (pl.col('ballSpeed') > 0)).then('mph').mean().round(1).alias('Avg MPH'),
          pl.col('mph').max().alias('Max MPH'),
          pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
          (pl.col('swing').sum() / pl.col('pitch').sum()).alias('Swing%'),
          ((pl.col('swing') & pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Z-Swing%'),
          ((pl.col('swing') & ~pl.col('zone')).sum() / pl.col('pitch').sum()).alias('Chase%'),
          ((pl.col('swing') & ~pl.col('whiff')).sum()/pl.col('swing').sum()).alias('Contact%'),
          ((pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(pl.col('zone') & pl.col('swing')).sum()).alias('Z-Contact%'),
          ((~pl.col('zone') & pl.col('swing') & ~pl.col('whiff')).sum()/(~pl.col('zone') & pl.col('swing')).sum()).alias('O-Contact%'),
          (pl.col('whiff').sum() / pl.col('swing').sum()).alias('Whiff%'),
          (pl.col('whiff').sum() / pl.col('pitch').sum()).alias('SwStr%'),
          (pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
          (pl.col('zone').sum() / pl.col('pitch').sum()).alias('Zone%'),
          (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') < 0).otherwise(pl.col('x') > 0)).mean().alias('Glove%'),
          (pl.when(pl.col('pitLR') == 'r').then(pl.col('x') >= 0).otherwise(pl.col('x') <= 0)).mean().alias('Arm%'),
          (pl.col('y') > 125).mean().alias('High%'),
          (pl.col('y') <= 125).mean().alias('Low%'),
          (pl.col('x').is_between(-20, 20) & pl.col('y').is_between(100, 100+50)).mean().alias('MM%')
      )
      .with_columns(
          (pl.col('count')/pl.sum('count').over('pitId')).alias('usage'),
          (pl.col('count') >= min_pitches).alias('qualified'),
      )
      .explode('batType')
      .unnest('batType')
      .pivot(on='batType', values='proportion')
      .fill_null(0)
      .with_columns(
          (pl.col('G') + pl.col('B')).alias('GB%'),
          (pl.col('F') + pl.col('P')).alias('FB%'),
          pl.col('L').alias('LD%').round(2),
      )
      .drop('G', 'F', 'B', 'P', 'L', 'null')
      .with_columns(
          (pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=((stat in ['FB%', 'LD%'] or 'Contact%' in stat)))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
          for stat in ['Avg KPH', 'Max KPH', 'Avg MPH', 'Max MPH', 'Swing%', 'Z-Swing%', 'Chase%', 'Contact%', 'Z-Contact%', 'O-Contact%', 'SwStr%', 'Whiff%', 'CSW%', 'GB%', 'FB%', 'LD%', 'Zone%']
      )
      .rename({pitch_col: 'ballKind_code', pitch_name_col: 'ballKind'} if pitch_class_type == 'general' else {})
      .sort(id_col, 'count', descending=[False, True])
  )
  return pitch_stats
  

def compute_player_stats(data, player_type, min_ip='qualified'):
  data = (
      compute_team_games(data)
      .with_columns(
          pl.when(pl.col('half_inning').str.ends_with('1')).then('home_games').otherwise('visitor_games').first().over('pitId').alias('games'),
          pl.col('inning_code').unique().len().over('pitId').alias('IP')
      )
  )

  if min_ip == 'qualified':
    data = data.with_columns((pl.col('IP') >= pl.col('games')).alias('qualified'))
  else:
    data = data.with_columns((pl.col('IP') >= min_ip).alias('qualified'))

  assert player_type in ('pitcher', 'batter') 
  id_col = 'pitId' if player_type == 'pitcher' else 'batId'
  name_col = 'pitcher_name' if player_type == 'pitcher' else 'batter_name'
  player_stats = (
    data
    .group_by(id_col)
    .agg(
        pl.col(name_col).first(),
        (pl.when(pl.col('presult').str.contains('strikeout')).then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('K%'),
        (pl.when(pl.col('presult') == 'Walk').then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('BB%'),
        (pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
        pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
        pl.first('qualified')
    )
    .explode('batType')
    .unnest('batType')
    .pivot(on='batType', values='proportion')
    .fill_null(0)
    .with_columns(
        (pl.col('G') + pl.col('B')).alias('GB%'),
        (pl.col('F') + pl.col('P')).alias('FB%'),
        pl.col('L').alias('LD%'),
    )
    .drop('G', 'F', 'B', 'P', 'L')
    .with_columns(
        (pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=(stat == 'BB%'))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
        for stat in ['CSW%', 'K%', 'BB%', 'GB%']
    )
  )
  return player_stats


def get_pitcher_stats(id, lr=None, game_kind=None, start_date=None, end_date=None, min_ip=1, min_pitches=1, pitch_class_type='specific'):
  # source_data = data_df.filter(pl.col('ballKind_code') != '-')

  # if start_date is not None:
    # source_data = source_data.filter(pl.col('date') >= start_date)
  # if end_date is not None:
    # source_data = source_data.filter(pl.col('date') <= end_date)
# 
  # if game_kind is not None:
    # source_data = source_data.filter(pl.col('coarse_game_kind') == game_kind)
  source_data = data_df
  source_data = filter_data_by_date_and_game_kind(source_data, start_date=start_date, end_date=end_date, game_kind=game_kind)

  if lr is not None:
    source_data = source_data.filter(pl.col('batLR') == lr)

  pitch_stats = compute_pitch_stats(source_data, player_type='pitcher', pitch_class_type=pitch_class_type, min_pitches=min_pitches).filter(pl.col('pitId') == id)

  pitch_shapes = (
      source_data
      .filter(
          (pl.col('pitId') == id) &
          pl.col('x').is_not_null() &
          pl.col('y').is_not_null() &
          (pl.col('ballSpeed') > 0)
      )
      [['pitId', 'general_ballKind_code', 'ballKind_code', 'ballSpeed', 'x', 'y']]
      .with_columns((pl.col('ballSpeed')/1.609).alias('ballSpeed_mph'))
  )

  pitcher_stats = compute_player_stats(source_data, player_type='pitcher', min_ip=min_ip).filter(pl.col('pitId') == id)

  return SimpleNamespace(pitcher_stats=pitcher_stats, pitch_stats=pitch_stats, pitch_shapes=pitch_shapes)