Spaces:
Running
Running
Commit
·
b421bc5
1
Parent(s):
0ed953a
Add working app
Browse files- README.md +4 -4
- convert.py +30 -0
- data.py +67 -6
- pitcher_overview.py +54 -17
- plotting.py +396 -0
README.md
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
---
|
| 2 |
title: Npb Data App
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.37.0
|
| 8 |
-
app_file:
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
|
|
|
| 1 |
---
|
| 2 |
title: Npb Data App
|
| 3 |
+
emoji: ⚾️
|
| 4 |
+
colorFrom: white
|
| 5 |
+
colorTo: blue
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.37.0
|
| 8 |
+
app_file: pitcher_overview.py
|
| 9 |
pinned: false
|
| 10 |
---
|
| 11 |
|
convert.py
CHANGED
|
@@ -257,3 +257,33 @@ game_kind = {
|
|
| 257 |
37: 'PL Climax Series First Stage',
|
| 258 |
38: 'PL Climax Series Final Stage'
|
| 259 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 257 |
37: 'PL Climax Series First Stage',
|
| 258 |
38: 'PL Climax Series Final Stage'
|
| 259 |
}
|
| 260 |
+
|
| 261 |
+
ball_kind_code_to_color = {
|
| 262 |
+
'-': '',
|
| 263 |
+
'FF': 'crimson',
|
| 264 |
+
'SL': 'gold',
|
| 265 |
+
'VS': '',
|
| 266 |
+
'SV': '',
|
| 267 |
+
'CU': 'paleturquoise',
|
| 268 |
+
'SC': 'royalblue',
|
| 269 |
+
'PC': '',
|
| 270 |
+
'KC': 'rebeccapurple',
|
| 271 |
+
'FO': 'darkturquoise',
|
| 272 |
+
'FS': 'cadetblue',
|
| 273 |
+
'CH': 'mediumseagreen',
|
| 274 |
+
'SI': '',
|
| 275 |
+
'SB': '',
|
| 276 |
+
'PB': '',
|
| 277 |
+
'SH': 'tomato',
|
| 278 |
+
'FT': '',
|
| 279 |
+
'FW': '',
|
| 280 |
+
'FC': 'sienna',
|
| 281 |
+
'EP': '', # technically "super" eephus but I haven't encountered a normal one yet
|
| 282 |
+
'HS': '',
|
| 283 |
+
'HL': ''
|
| 284 |
+
}
|
| 285 |
+
ball_kind_code_to_color = {k: v if v else 'C0' for k, v in ball_kind_code_to_color.items()}
|
| 286 |
+
def get_text_color_from_color(color):
|
| 287 |
+
if color in ['gold', 'paleturquoise']:
|
| 288 |
+
return 'black'
|
| 289 |
+
return 'white'
|
data.py
CHANGED
|
@@ -1,13 +1,19 @@
|
|
| 1 |
import polars as pl
|
| 2 |
import os
|
| 3 |
from tqdm.auto import tqdm
|
|
|
|
|
|
|
| 4 |
|
| 5 |
from convert import aux_global_id_to_code, presult, ball_kind, ball_kind_code, lr, game_kind
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
SEASONS = [2021, 2022, 2023, 2024, 2025]
|
| 10 |
-
# SEASONS = [2024]
|
| 11 |
|
| 12 |
data_df = pl.DataFrame()
|
| 13 |
text_df = pl.DataFrame()
|
|
@@ -31,8 +37,60 @@ for season in tqdm(SEASONS):
|
|
| 31 |
_aux_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'aux_schedule.parquet'))
|
| 32 |
aux_sched_df = pl.concat((aux_sched_df, _aux_sched_df))
|
| 33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
aux_df = (
|
| 38 |
aux_df
|
|
@@ -131,8 +189,8 @@ data_df = (
|
|
| 131 |
on='universal_code',
|
| 132 |
how='left'
|
| 133 |
)
|
| 134 |
-
.
|
| 135 |
-
|
| 136 |
)
|
| 137 |
.join(
|
| 138 |
text_df[['GameID', 'GameKindID']].with_columns(
|
|
@@ -176,3 +234,6 @@ data_df = (
|
|
| 176 |
(pl.col('whiff') | pl.col('presult').is_in(['Looking strike', 'Uncaught third strike', 'Looking strikeout'])).alias('csw')
|
| 177 |
)
|
| 178 |
)
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import polars as pl
|
| 2 |
import os
|
| 3 |
from tqdm.auto import tqdm
|
| 4 |
+
import pykakasi
|
| 5 |
+
from huggingface_hub import snapshot_download
|
| 6 |
|
| 7 |
from convert import aux_global_id_to_code, presult, ball_kind, ball_kind_code, lr, game_kind
|
| 8 |
|
| 9 |
+
|
| 10 |
+
DATA_PATH = snapshot_download(
|
| 11 |
+
repo_id='Ramos-Ramos/npb_data_app',
|
| 12 |
+
repo_type='dataset',
|
| 13 |
+
local_dir='./files',
|
| 14 |
+
cache_dir='./.cache'
|
| 15 |
+
)
|
| 16 |
SEASONS = [2021, 2022, 2023, 2024, 2025]
|
|
|
|
| 17 |
|
| 18 |
data_df = pl.DataFrame()
|
| 19 |
text_df = pl.DataFrame()
|
|
|
|
| 37 |
_aux_sched_df = pl.read_parquet(os.path.join(DATA_PATH, str(season), 'aux_schedule.parquet'))
|
| 38 |
aux_sched_df = pl.concat((aux_sched_df, _aux_sched_df))
|
| 39 |
|
| 40 |
+
players_df = pl.read_parquet(os.path.join(DATA_PATH, 'players.parquet'))
|
| 41 |
+
kana_df = pl.read_parquet(os.path.join(DATA_PATH, 'players_kana.parquet'))
|
| 42 |
+
|
| 43 |
+
kks = pykakasi.kakasi()
|
| 44 |
+
kana_df = (
|
| 45 |
+
kana_df
|
| 46 |
+
.with_columns(
|
| 47 |
+
pl.col('name').str.normalize('NFKC'),
|
| 48 |
+
(
|
| 49 |
+
pl.col('name_kana')
|
| 50 |
+
.map_elements(
|
| 51 |
+
lambda name: ''.join([word['hepburn'].capitalize() for word in kks.convert(name)]),
|
| 52 |
+
return_dtype=pl.String
|
| 53 |
+
)
|
| 54 |
+
.alias('name_en')
|
| 55 |
+
)
|
| 56 |
+
)
|
| 57 |
+
.with_columns(pl.col('name_en').str.to_lowercase())
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
for old_part, new_part in [
|
| 61 |
+
('you', 'yo'),
|
| 62 |
+
('kou', 'ko'),
|
| 63 |
+
('gou', 'go'),
|
| 64 |
+
('shou', 'sho'),
|
| 65 |
+
('jou', 'jo'),
|
| 66 |
+
('rou', 'ro'),
|
| 67 |
+
('ou', 'oh'),
|
| 68 |
+
('shuu', 'shu'),
|
| 69 |
+
('ryuu', 'ryu'),
|
| 70 |
+
('yuu', 'yu'),
|
| 71 |
+
('oo', 'o') # messes with someone whose name ends in koo
|
| 72 |
+
]:
|
| 73 |
+
kana_df = kana_df.with_columns(pl.col('name_en').str.replace(old_part, new_part))
|
| 74 |
|
| 75 |
+
kana_df = kana_df.with_columns(pl.col('name_en').str.to_titlecase())
|
| 76 |
+
|
| 77 |
+
players_df = players_df.with_columns(pl.col('playerName').str.normalize('NFKC'))
|
| 78 |
+
for old_char, new_char in [
|
| 79 |
+
('崎', '﨑'),
|
| 80 |
+
('高', '髙'),
|
| 81 |
+
('徳', '德'),
|
| 82 |
+
('濱', '濵'),
|
| 83 |
+
('瀬', '瀨')
|
| 84 |
+
]:
|
| 85 |
+
players_df = (
|
| 86 |
+
players_df.with_columns(
|
| 87 |
+
pl.when(~pl.col('playerName').is_in(kana_df['name']))
|
| 88 |
+
.then(pl.col('playerName').str.replace(old_char, new_char))
|
| 89 |
+
.otherwise('playerName')
|
| 90 |
+
)
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
players_df = players_df.join(kana_df, left_on='playerName', right_on='name', how='left')
|
| 94 |
|
| 95 |
aux_df = (
|
| 96 |
aux_df
|
|
|
|
| 189 |
on='universal_code',
|
| 190 |
how='left'
|
| 191 |
)
|
| 192 |
+
.join(
|
| 193 |
+
players_df.rename({'name_en': 'pitcher_name'}), left_on='pitId', right_on='playerId', how='left'
|
| 194 |
)
|
| 195 |
.join(
|
| 196 |
text_df[['GameID', 'GameKindID']].with_columns(
|
|
|
|
| 234 |
(pl.col('whiff') | pl.col('presult').is_in(['Looking strike', 'Uncaught third strike', 'Looking strikeout'])).alias('csw')
|
| 235 |
)
|
| 236 |
)
|
| 237 |
+
|
| 238 |
+
if __name__ == '__main__':
|
| 239 |
+
breakpoint()
|
pitcher_overview.py
CHANGED
|
@@ -1,36 +1,73 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
from data import SEASONS
|
|
|
|
|
|
|
| 4 |
|
| 5 |
def dummy(*inputs):
|
| 6 |
return inputs
|
| 7 |
|
| 8 |
-
def
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
def
|
| 12 |
-
return
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def create_pitcher_overview(data_df):
|
| 16 |
with gr.Blocks() as app:
|
| 17 |
-
gr.Markdown('
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
return app
|
| 34 |
|
| 35 |
if __name__ == '__main__':
|
| 36 |
-
create_pitcher_overview().launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import polars as pl
|
| 4 |
|
| 5 |
+
from data import SEASONS, data_df
|
| 6 |
+
|
| 7 |
+
from plotting import create_pitcher_overview_card
|
| 8 |
|
| 9 |
def dummy(*inputs):
|
| 10 |
return inputs
|
| 11 |
|
| 12 |
+
def gr_create_pitcher_overview_card(name, season):
|
| 13 |
+
# pit_id = name.split(' | ')[-1]
|
| 14 |
+
pit_id = data_df.filter(pl.col('pitcher_name') == name)['pitId'].unique()
|
| 15 |
+
if len(pit_id) == 0:
|
| 16 |
+
raise gr.Error(f"No data found for {name}. If the name looks strangely spelled or formatted there's a possibility that's what causing the error.")
|
| 17 |
+
elif len(pit_id) > 1:
|
| 18 |
+
raise gr.Error(f'Multiple IDs for {name}')
|
| 19 |
+
else:
|
| 20 |
+
pit_id = pit_id.item()
|
| 21 |
+
create_pitcher_overview_card(pit_id, season=season, dpi=300)
|
| 22 |
+
plt.savefig('tmp.png', bbox_inches='tight')
|
| 23 |
+
return 'tmp.png'
|
| 24 |
|
| 25 |
+
# def adjust_season_end_based_on_season_start(season_start, season_end):
|
| 26 |
+
# return max(season_start, season_end)
|
| 27 |
+
#
|
| 28 |
+
# def adjust_season_start_based_on_season_end(season_end, season_start):
|
| 29 |
+
# return min(season_start, season_end)
|
| 30 |
|
| 31 |
|
| 32 |
def create_pitcher_overview(data_df):
|
| 33 |
with gr.Blocks() as app:
|
| 34 |
+
gr.Markdown('Pitcher overview')
|
| 35 |
|
| 36 |
+
with gr.Row():
|
| 37 |
+
with gr.Column():
|
| 38 |
+
# names = [f'{pit_name} | {pit_id}' for pit_name, pit_id in data_df[['pitcher_name', 'pitId']].unique().sort('pitId').iter_rows()]
|
| 39 |
+
names = data_df['pitcher_name'].unique().sort().to_list()
|
| 40 |
+
name = gr.Dropdown(names, label='Name')
|
| 41 |
+
season = gr.Dropdown(SEASONS, label='Season')
|
| 42 |
+
# season_start = gr.Dropdown(SEASONS, label='Season start')
|
| 43 |
+
# season_end = gr.Dropdown(SEASONS, label='Season end')
|
| 44 |
+
# game_type = gr.Dropdown(['Spring Training', 'Regular Season', 'Postseason'], label='Game Type'])
|
| 45 |
+
view = gr.Button('View')
|
| 46 |
+
gr.Markdown(
|
| 47 |
+
'''
|
| 48 |
+
**Limitations**
|
| 49 |
+
- Foreign players names are in Hebpurn romanization. Contact me if you need a card for a foreign player.
|
| 50 |
|
| 51 |
+
**To-do**
|
| 52 |
+
- Fix names of foreign playeres
|
| 53 |
+
- Add teams insignias
|
| 54 |
+
- Measure percentiles per pitcher handedness
|
| 55 |
+
- Allow for arbitrary date ranges
|
| 56 |
+
- Improve readability of pitch velocities
|
| 57 |
|
| 58 |
+
Last updated: 2025-07-19
|
| 59 |
+
'''
|
| 60 |
+
)
|
| 61 |
|
| 62 |
+
with gr.Column():
|
| 63 |
+
overview_card = gr.Image(label='Overview')
|
| 64 |
+
|
| 65 |
+
# season_start.input(adjust_season_end_based_on_season_start, inputs=[season_start, season_end], outputs=season_end)
|
| 66 |
+
# season_end.input(adjust_season_start_based_on_season_end, inputs=[season_end, season_start], outputs=season_start)
|
| 67 |
+
view.click(gr_create_pitcher_overview_card, inputs=[name, season], outputs=overview_card)
|
| 68 |
+
|
| 69 |
|
| 70 |
return app
|
| 71 |
|
| 72 |
if __name__ == '__main__':
|
| 73 |
+
create_pitcher_overview(data_df).launch()
|
plotting.py
ADDED
|
@@ -0,0 +1,396 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import matplotlib as mpl
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
from matplotlib import transforms
|
| 4 |
+
from matplotlib.colors import LinearSegmentedColormap
|
| 5 |
+
import polars as pl
|
| 6 |
+
from pyfonts import load_google_font
|
| 7 |
+
from scipy.stats import gaussian_kde
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
from types import SimpleNamespace
|
| 11 |
+
from datetime import date
|
| 12 |
+
|
| 13 |
+
from data import data_df
|
| 14 |
+
from convert import ball_kind_code_to_color, get_text_color_from_color
|
| 15 |
+
|
| 16 |
+
mpl.use('Agg')
|
| 17 |
+
|
| 18 |
+
def compute_team_games(data):
|
| 19 |
+
data = (
|
| 20 |
+
data
|
| 21 |
+
.with_columns(
|
| 22 |
+
pl.col('gameId').unique().len().over('HomeTeamNameES').alias('home_games'),
|
| 23 |
+
pl.col('gameId').unique().len().over('VisitorTeamNameES').alias('visitor_games')
|
| 24 |
+
)
|
| 25 |
+
)
|
| 26 |
+
game_data = (
|
| 27 |
+
data
|
| 28 |
+
.group_by('HomeTeamNameES')
|
| 29 |
+
.first()
|
| 30 |
+
[['HomeTeamNameES', 'home_games']]
|
| 31 |
+
.rename({'HomeTeamNameES': 'team'})
|
| 32 |
+
.join(
|
| 33 |
+
(
|
| 34 |
+
data
|
| 35 |
+
.group_by('VisitorTeamNameES')
|
| 36 |
+
.first()
|
| 37 |
+
[['VisitorTeamNameES', 'visitor_games']]
|
| 38 |
+
.rename({'VisitorTeamNameES': 'team'})
|
| 39 |
+
),
|
| 40 |
+
on='team',
|
| 41 |
+
)
|
| 42 |
+
.with_columns((pl.col('home_games')+pl.col('visitor_games')).alias('games'))
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
return (
|
| 46 |
+
data
|
| 47 |
+
.drop('home_games', 'visitor_games')
|
| 48 |
+
.join(
|
| 49 |
+
game_data[['team', 'games']].rename({'games': 'home_games'}),
|
| 50 |
+
left_on='HomeTeamNameES',
|
| 51 |
+
right_on='team'
|
| 52 |
+
)
|
| 53 |
+
.join(
|
| 54 |
+
game_data[['team', 'games']].rename({'games': 'visitor_games'}),
|
| 55 |
+
left_on='VisitorTeamNameES',
|
| 56 |
+
right_on='team'
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_pitcher_stats(id, lr=None, game_kind=None, start_date=None, end_date=None, min_ip=1, min_pitches=1):
|
| 62 |
+
source_data = data_df.filter(pl.col('ballKind_code') != '-')
|
| 63 |
+
|
| 64 |
+
if start_date is not None:
|
| 65 |
+
source_data = source_data.filter(pl.col('date') >= start_date)
|
| 66 |
+
if end_date is not None:
|
| 67 |
+
source_data = source_data.filter(pl.col('date') <= end_date)
|
| 68 |
+
|
| 69 |
+
if game_kind is not None:
|
| 70 |
+
source_data = source_data.filter(pl.col('coarse_game_kind') == game_kind)
|
| 71 |
+
|
| 72 |
+
source_data = (
|
| 73 |
+
compute_team_games(source_data)
|
| 74 |
+
.with_columns(
|
| 75 |
+
pl.when(pl.col('half_inning').str.ends_with('1')).then('home_games').otherwise('visitor_games').first().over('pitId').alias('games'),
|
| 76 |
+
pl.col('inning_code').unique().len().over('pitId').alias('IP')
|
| 77 |
+
)
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
if min_ip == 'qualified':
|
| 81 |
+
source_data = source_data.with_columns((pl.col('IP') >= pl.col('games')).alias('qualified'))
|
| 82 |
+
else:
|
| 83 |
+
source_data = source_data.with_columns((pl.col('IP') >= min_ip).alias('qualified'))
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
if lr is not None:
|
| 87 |
+
source_data = source_data.filter(pl.col('batLR') == lr)
|
| 88 |
+
|
| 89 |
+
pitch_stats = (
|
| 90 |
+
source_data
|
| 91 |
+
# .with_columns(
|
| 92 |
+
# pl.col('presult').is_in(['None', 'Balk', 'Batter interference', 'Catcher interference', 'Pitcher delay', 'Intentional walk', 'Unknown']).not_().alias('pitch'),
|
| 93 |
+
# pl.col('presult').is_in(['Swinging strike', 'Swinging strikeout']).alias('whiff'),
|
| 94 |
+
# )
|
| 95 |
+
# .with_columns(
|
| 96 |
+
# (pl.col('pitch') & pl.col('presult').is_in(['Hit by pitch', 'Sacrifice bunt', 'Sacrifice fly', 'Looking strike', 'Ball', 'Walk', 'Looking strikeout', 'Sacrifice hit error', 'Sacrifice fly error', "Sacrifice fielder's choice", 'Bunt strikeout']).not_()).alias('swing'),
|
| 97 |
+
# (pl.col('whiff') | pl.col('presult').is_in(['Looking strike', 'Uncaught third strike', 'Looking strikeout'])).alias('csw')
|
| 98 |
+
# )
|
| 99 |
+
.group_by('pitId', 'ballKind_code')
|
| 100 |
+
.agg(
|
| 101 |
+
pl.len().alias('count'),
|
| 102 |
+
pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
|
| 103 |
+
(pl.col('whiff').sum() / pl.col('pitch').sum()).alias('SwStr%'),
|
| 104 |
+
(pl.col('whiff').sum() / pl.col('swing').sum()).alias('Whiff%'),
|
| 105 |
+
(pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%')
|
| 106 |
+
)
|
| 107 |
+
.with_columns(
|
| 108 |
+
(pl.col('count')/pl.sum('count').over('pitId')).alias('usage'),
|
| 109 |
+
(pl.col('count') >= min_pitches).alias('qualified')
|
| 110 |
+
)
|
| 111 |
+
.explode('batType')
|
| 112 |
+
.unnest('batType')
|
| 113 |
+
.pivot(on='batType', values='proportion')
|
| 114 |
+
.fill_null(0)
|
| 115 |
+
.with_columns(
|
| 116 |
+
(pl.col('G') + pl.col('B')).alias('GB%'),
|
| 117 |
+
(pl.col('F') + pl.col('P')).alias('FB%'),
|
| 118 |
+
pl.col('L').alias('LD%').round(2),
|
| 119 |
+
)
|
| 120 |
+
.drop('G', 'F', 'B', 'P', 'L')
|
| 121 |
+
.with_columns(
|
| 122 |
+
(pl.when(pl.col('qualified')).then(pl.col(stat)).rank()/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
|
| 123 |
+
for stat in ['SwStr%', 'Whiff%', 'CSW%', 'GB%']
|
| 124 |
+
)
|
| 125 |
+
.sort('pitId', 'count', descending=[False, True])
|
| 126 |
+
.filter(pl.col('pitId') == id)
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
pitch_shapes = (
|
| 130 |
+
source_data
|
| 131 |
+
.filter(
|
| 132 |
+
(pl.col('pitId') == id) &
|
| 133 |
+
pl.col('x').is_not_null() &
|
| 134 |
+
pl.col('y').is_not_null() &
|
| 135 |
+
(pl.col('ballSpeed') > 0)
|
| 136 |
+
)
|
| 137 |
+
[['pitId', 'ballKind_code', 'ballSpeed', 'x', 'y']]
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
pitcher_stats = (
|
| 141 |
+
source_data
|
| 142 |
+
.group_by('pitId')
|
| 143 |
+
.agg(
|
| 144 |
+
pl.col('pitcher_name').first(),
|
| 145 |
+
(pl.when(pl.col('presult').str.contains('strikeout')).then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('K%'),
|
| 146 |
+
(pl.when(pl.col('presult') == 'Walk').then(1).otherwise(0).sum() / pl.col('pa_code').unique().len()).alias('BB%'),
|
| 147 |
+
(pl.col('csw').sum() / pl.col('pitch').sum()).alias('CSW%'),
|
| 148 |
+
pl.col('aux_bresult').struct.field('batType').drop_nulls().value_counts(normalize=True),
|
| 149 |
+
pl.first('qualified')
|
| 150 |
+
)
|
| 151 |
+
.explode('batType')
|
| 152 |
+
.unnest('batType')
|
| 153 |
+
.pivot(on='batType', values='proportion')
|
| 154 |
+
.fill_null(0)
|
| 155 |
+
.with_columns(
|
| 156 |
+
(pl.col('G') + pl.col('B')).alias('GB%'),
|
| 157 |
+
(pl.col('F') + pl.col('P')).alias('FB%'),
|
| 158 |
+
pl.col('L').alias('LD%'),
|
| 159 |
+
)
|
| 160 |
+
.drop('G', 'F', 'B', 'P', 'L')
|
| 161 |
+
.with_columns(
|
| 162 |
+
(pl.when(pl.col('qualified')).then(pl.col(stat)).rank(descending=(stat == 'BB%'))/pl.when(pl.col('qualified')).then(pl.col(stat)).count()).alias(f'{stat}_pctl')
|
| 163 |
+
for stat in ['CSW%', 'K%', 'BB%', 'GB%']
|
| 164 |
+
)
|
| 165 |
+
.filter(pl.col('pitId') == id)
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
return SimpleNamespace(pitcher_stats=pitcher_stats, pitch_stats=pitch_stats, pitch_shapes=pitch_shapes)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def get_card_data(id, **kwargs):
|
| 172 |
+
both, left, right = get_pitcher_stats(id, **kwargs), get_pitcher_stats(id, 'l', **kwargs), get_pitcher_stats(id, 'r', **kwargs)
|
| 173 |
+
pitcher_stats = both.pitcher_stats.join(left.pitcher_stats, on='pitId', suffix='_left').join(right.pitcher_stats, on='pitId', suffix='_right')
|
| 174 |
+
pitch_stats = both.pitch_stats.join(left.pitch_stats, on='ballKind_code', how='full', suffix='_left').join(right.pitch_stats, on='ballKind_code', how='full', suffix='_right').fill_null(0)
|
| 175 |
+
return SimpleNamespace(
|
| 176 |
+
pitcher_stats=pitcher_stats,
|
| 177 |
+
pitch_stats=pitch_stats,
|
| 178 |
+
both_pitch_shapes=both.pitch_shapes,
|
| 179 |
+
left_pitch_shapes=left.pitch_shapes,
|
| 180 |
+
right_pitch_shapes=right.pitch_shapes
|
| 181 |
+
)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def plot_arsenal(ax, pitches):
|
| 185 |
+
ax.set_xlim(0, 11)
|
| 186 |
+
x = np.arange(len(pitches)) + 0.5
|
| 187 |
+
y = np.zeros(len(pitches))
|
| 188 |
+
ax.scatter(x, y, c=[ball_kind_code_to_color.get(pitch, 'C0') for pitch in pitches], s=170)
|
| 189 |
+
for i, pitch in enumerate(pitches):
|
| 190 |
+
color = ball_kind_code_to_color.get(pitch, 'C0')
|
| 191 |
+
ax.text(x=i+0.5, y=0, s=pitch, horizontalalignment='center', verticalalignment='center', font=font, color=get_text_color_from_color(color))
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def plot_usage(ax, usages):
|
| 195 |
+
left = 0
|
| 196 |
+
height = 0.8
|
| 197 |
+
for pitch, usage in usages.iter_rows():
|
| 198 |
+
color = ball_kind_code_to_color[pitch]
|
| 199 |
+
ax.barh(0, usage, height=height, left=left, color=color)
|
| 200 |
+
if usage > 0.1:
|
| 201 |
+
ax.text(left+usage/2, 0, f'{usage:.0%}', horizontalalignment='center', verticalalignment='center', size=8, font=font, color=get_text_color_from_color(color))
|
| 202 |
+
left += usage
|
| 203 |
+
ax.set_xlim(0, 1)
|
| 204 |
+
ax.set_ylim(-height/2, height/2*2.75)
|
| 205 |
+
|
| 206 |
+
|
| 207 |
+
x_range = np.arange(-100, 100+1)
|
| 208 |
+
y_range = np.arange(0, 250+1)
|
| 209 |
+
X, Y = np.meshgrid(x_range, y_range)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
def fit_pred_kde(data):
|
| 213 |
+
kde = gaussian_kde(data)
|
| 214 |
+
Z = kde(np.concat((X, Y)).reshape(2, -1)).reshape(*X.shape)
|
| 215 |
+
return Z
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def plot_loc(ax, locs):
|
| 219 |
+
ax.set_aspect('equal', adjustable='datalim')
|
| 220 |
+
ax.set_ylim(-52, 252)
|
| 221 |
+
ax.add_patch(plt.Rectangle((-100, 0), width=200, height=250, facecolor='darkgray', edgecolor='dimgray'))
|
| 222 |
+
ax.add_patch(plt.Rectangle((-80, 25), width=160, height=200, facecolor='gainsboro', edgecolor='dimgray'))
|
| 223 |
+
ax.add_patch(plt.Rectangle((-60, 50), width=120, height=150, fill=False, edgecolor='yellowgreen', linestyle=':'))
|
| 224 |
+
ax.add_patch(plt.Rectangle((-40, 75), width=80, height=100, facecolor='ivory', edgecolor='darkgray'))
|
| 225 |
+
ax.add_patch(plt.Polygon([(0, -10), (45, -30), (51, -50), (-51, -50), (-45, -30), (0, -10)], facecolor='snow', edgecolor='darkgray'))
|
| 226 |
+
|
| 227 |
+
for (pitch,), _locs in locs.sort(pl.len().over('ballKind_code'), descending=True).group_by('ballKind_code', maintain_order=True):
|
| 228 |
+
if len(_locs) <= 2:
|
| 229 |
+
continue
|
| 230 |
+
|
| 231 |
+
Z = fit_pred_kde(_locs[['x', 'y']].to_numpy().T)
|
| 232 |
+
Z = Z / Z.sum()
|
| 233 |
+
|
| 234 |
+
Z_flat = Z.ravel()
|
| 235 |
+
sorted_Z = np.sort(Z_flat)
|
| 236 |
+
sorted_Z_idxs = np.argsort(Z_flat)
|
| 237 |
+
Z_cumsum = (sorted_Z).cumsum()
|
| 238 |
+
t = Z_flat[sorted_Z_idxs[np.argmin(np.abs(Z_cumsum - (1-0.68)))]]
|
| 239 |
+
|
| 240 |
+
ax.contourf(X, Y, Z, levels=[t, 1], colors=ball_kind_code_to_color[pitch], alpha=0.5)
|
| 241 |
+
ax.contour(X, Y, Z, levels=t.reshape(1), colors=ball_kind_code_to_color[pitch], alpha=0.75)
|
| 242 |
+
|
| 243 |
+
|
| 244 |
+
def plot_velo(ax, velos):
|
| 245 |
+
trans = transforms.blended_transform_factory(ax.transData, ax.transAxes)
|
| 246 |
+
for (pitch,), _velos in velos.group_by('ballKind_code'):
|
| 247 |
+
if len(_velos) <= 1:
|
| 248 |
+
continue
|
| 249 |
+
|
| 250 |
+
violin = ax.violinplot(_velos['ballSpeed'], orientation='horizontal', side='high', showextrema=False)
|
| 251 |
+
for _violin in violin['bodies']:
|
| 252 |
+
_violin.set_facecolor(ball_kind_code_to_color[pitch])
|
| 253 |
+
mean = _velos['ballSpeed'].mean()
|
| 254 |
+
ax.text(mean, 0.5, round(mean), horizontalalignment='center', verticalalignment='center', color='gray', alpha=0.75, font=font, transform=trans)
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
stat_cmap = LinearSegmentedColormap.from_list('stat', colors=['dodgerblue', 'snow', 'crimson'])
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def plot_pitch_stats(ax, stats, stat_names):
|
| 261 |
+
|
| 262 |
+
ax.set_aspect('equal', adjustable='datalim')
|
| 263 |
+
|
| 264 |
+
# axis_to_data = lambda coords: ax.transData.inverted().transform(ax.transAxes.transform(coords))
|
| 265 |
+
|
| 266 |
+
table = mpl.table.Table(ax)
|
| 267 |
+
rows = len(stat_names) + 1
|
| 268 |
+
cols = len(stats) + 1
|
| 269 |
+
|
| 270 |
+
cell_height = 1/rows
|
| 271 |
+
cell_width = 1/cols
|
| 272 |
+
|
| 273 |
+
|
| 274 |
+
for row, stat in enumerate(stat_names, start=1):
|
| 275 |
+
cell = table.add_cell(row=row, col=0, width=cell_width, height=cell_height, text=stat, loc='center', fontproperties=font, edgecolor='white')
|
| 276 |
+
|
| 277 |
+
for col, pitch in enumerate(stats['ballKind_code'], start=1):
|
| 278 |
+
|
| 279 |
+
color = ball_kind_code_to_color.get(pitch, 'C0')
|
| 280 |
+
cell = table.add_cell(row=0, col=col, width=cell_width, height=cell_height, text=pitch, loc='center', fontproperties=font, facecolor=color, edgecolor='white')
|
| 281 |
+
cell.get_text().set_color(get_text_color_from_color(color))
|
| 282 |
+
|
| 283 |
+
_stats = stats.filter(pl.col('ballKind_code') == pitch)
|
| 284 |
+
qualified = _stats['qualified'].item()
|
| 285 |
+
for row, stat_name in enumerate(stat_names, start=1):
|
| 286 |
+
stat = _stats[stat_name].item()
|
| 287 |
+
stat_pctl = _stats[f'{stat_name}_pctl'].item()
|
| 288 |
+
cell = table.add_cell(row=row, col=col, width=cell_width, height=cell_height, text=f'{stat:.0%}', loc='center', fontproperties=font, facecolor=(stat_cmap([0, stat_pctl, 1])[1] if qualified else 'gainsboro'), edgecolor='white')
|
| 289 |
+
if not qualified:
|
| 290 |
+
cell.get_text().set_color('gray')
|
| 291 |
+
ax.add_artist(table)
|
| 292 |
+
|
| 293 |
+
|
| 294 |
+
def plot_pitcher_stats(ax, stats, stat_names):
|
| 295 |
+
|
| 296 |
+
ax.set_aspect('equal', adjustable='datalim')
|
| 297 |
+
|
| 298 |
+
table = mpl.table.Table(ax)
|
| 299 |
+
|
| 300 |
+
cell_height = 1
|
| 301 |
+
cell_width = 1/(len(stat_names)*2)
|
| 302 |
+
|
| 303 |
+
qualified = stats['qualified'].item()
|
| 304 |
+
|
| 305 |
+
for i, stat_name in enumerate(stat_names):
|
| 306 |
+
stat = stats[stat_name].item()
|
| 307 |
+
stat_pctl = stats[f'{stat_name}_pctl'].item()
|
| 308 |
+
|
| 309 |
+
table.add_cell(row=0, col=i*2, width=cell_width, height=cell_height, text=stat_name, loc='center', fontproperties=font, edgecolor='white')
|
| 310 |
+
cell = table.add_cell(row=0, col=i*2+1, width=cell_width, height=cell_height, text=f'{stat:.0%}', loc='center', fontproperties=font, facecolor=(stat_cmap([0, stat_pctl, 1])[1] if qualified else 'gainsboro'), edgecolor='white')
|
| 311 |
+
if not qualified:
|
| 312 |
+
cell.get_text().set_color('gray')
|
| 313 |
+
ax.add_artist(table)
|
| 314 |
+
|
| 315 |
+
|
| 316 |
+
font = load_google_font('Saira Extra Condensed', weight='medium')
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
def create_pitcher_overview_card(id, season, dpi=300):
|
| 320 |
+
data = get_card_data(id, start_date=date(season, 1, 1), end_date=date(season, 12, 31), game_kind='Regular Season', min_pitches=100)
|
| 321 |
+
|
| 322 |
+
fig = plt.figure(figsize=(1080/300, 1350/300), dpi=dpi)
|
| 323 |
+
gs = fig.add_gridspec(8, 6, height_ratios=[1, 1, 1.5, 6, 1, 3, 1, 0.5])
|
| 324 |
+
title_ax = fig.add_subplot(gs[0, :])
|
| 325 |
+
title_ax.text(x=0, y=0, s=data.pitcher_stats['pitcher_name'].item().upper(), verticalalignment='baseline', font=font, size=20)
|
| 326 |
+
# title_ax.text(x=1, y=1, s='2021\n-2023', horizontalalignment='right', verticalalignment='top', font=font, size=8)
|
| 327 |
+
title_ax.text(x=0.95, y=0, s=season, horizontalalignment='right', verticalalignment='baseline', font=font, size=20)
|
| 328 |
+
title_ax.text(x=1, y=0.5, s='REG', horizontalalignment='right', verticalalignment='center', font=font, size=10, rotation='vertical')
|
| 329 |
+
|
| 330 |
+
arsenal_ax = fig.add_subplot(gs[1, :])
|
| 331 |
+
plot_arsenal(arsenal_ax, data.pitch_stats['ballKind_code'])
|
| 332 |
+
|
| 333 |
+
|
| 334 |
+
usage_l_ax = fig.add_subplot(gs[2, :3])
|
| 335 |
+
plot_usage(usage_l_ax, data.pitch_stats[['ballKind_code', 'usage_left']])
|
| 336 |
+
usage_l_ax.text(0, 1, 'LHH usage', horizontalalignment='left', verticalalignment='top', linespacing=0.5, color='gray', font=font, size=10, transform=usage_l_ax.transAxes)
|
| 337 |
+
|
| 338 |
+
usage_r_ax = fig.add_subplot(gs[2, 3:])
|
| 339 |
+
plot_usage(usage_r_ax, data.pitch_stats[['ballKind_code', 'usage_right']])
|
| 340 |
+
usage_r_ax.text(0, 1, 'RHH usage', horizontalalignment='left', verticalalignment='top', linespacing=0.5, color='gray', font=font, size=10, transform=usage_r_ax.transAxes)
|
| 341 |
+
|
| 342 |
+
loc_l_ax = fig.add_subplot(gs[3, :3])
|
| 343 |
+
loc_l_ax.text(0, 1, 'LHH\nloc', verticalalignment='top', horizontalalignment='left', color='gray', font=font, size=10, transform=loc_l_ax.transAxes)
|
| 344 |
+
plot_loc(loc_l_ax, data.left_pitch_shapes)
|
| 345 |
+
|
| 346 |
+
loc_r_ax = fig.add_subplot(gs[3, 3:])
|
| 347 |
+
loc_r_ax.text(0, 1, 'RHH\nloc', verticalalignment='top', horizontalalignment='left', color='gray', font=font, size=10, transform=loc_r_ax.transAxes)
|
| 348 |
+
plot_loc(loc_r_ax, data.right_pitch_shapes)
|
| 349 |
+
|
| 350 |
+
velo_ax = fig.add_subplot(gs[4, :])
|
| 351 |
+
plot_velo(velo_ax, data.both_pitch_shapes)
|
| 352 |
+
velo_ax.text(0, 1, 'Velo', verticalalignment='top', horizontalalignment='left', color='gray', font=font, size=10, transform=velo_ax.transAxes)
|
| 353 |
+
|
| 354 |
+
pitch_stats_ax = fig.add_subplot(gs[5, :])
|
| 355 |
+
plot_pitch_stats(pitch_stats_ax, data.pitch_stats, ['CSW%', 'GB%'])
|
| 356 |
+
|
| 357 |
+
pitcher_stats_ax = fig.add_subplot(gs[6, :])
|
| 358 |
+
plot_pitcher_stats(pitcher_stats_ax, data.pitcher_stats, ['CSW%', 'K%', 'BB%', 'GB%'])
|
| 359 |
+
|
| 360 |
+
|
| 361 |
+
# k_ax = fig.add_subplot(gs[5, :2])
|
| 362 |
+
# plot_stat(k_ax, data.pitcher_stats, 'K%')
|
| 363 |
+
|
| 364 |
+
# bb_ax = fig.add_subplot(gs[5, 2:4])
|
| 365 |
+
# plot_stat(bb_ax, data.pitcher_s`tats, 'BB%')
|
| 366 |
+
|
| 367 |
+
# gb_ax = fig.add_subplot(gs[5, 4:])
|
| 368 |
+
# plot_stat(gb_ax, data.pitcher_stats, 'GB%')
|
| 369 |
+
|
| 370 |
+
credits_ax = fig.add_subplot(gs[7, :])
|
| 371 |
+
credits_ax.text(x=0, y=0.5, s='Data: SPAIA, Sanspo', verticalalignment='center', font=font, size=7)
|
| 372 |
+
credits_ax.text(x=1, y=0.5, s='@yakyucosmo', horizontalalignment='right', verticalalignment='center', font=font, size=7)
|
| 373 |
+
|
| 374 |
+
for ax in [
|
| 375 |
+
title_ax,
|
| 376 |
+
arsenal_ax,
|
| 377 |
+
usage_l_ax, usage_r_ax,
|
| 378 |
+
loc_l_ax, loc_r_ax,
|
| 379 |
+
velo_ax,
|
| 380 |
+
# k_ax, bb_ax, gb_ax,
|
| 381 |
+
pitch_stats_ax,
|
| 382 |
+
pitcher_stats_ax,
|
| 383 |
+
credits_ax
|
| 384 |
+
]:
|
| 385 |
+
ax.axis('off')
|
| 386 |
+
ax.tick_params(
|
| 387 |
+
axis='both',
|
| 388 |
+
which='both',
|
| 389 |
+
length=0,
|
| 390 |
+
labelbottom=False,
|
| 391 |
+
labelleft=False
|
| 392 |
+
)
|
| 393 |
+
|
| 394 |
+
return fig
|
| 395 |
+
# fig = create_card('1600153', season=2023, dpi=300)
|
| 396 |
+
# plt.show()
|