Spaces:
Runtime error
Runtime error
| # Prediction interface for Cog ⚙️ | |
| # https://github.com/replicate/cog/blob/main/docs/python.md | |
| import os | |
| import sys | |
| import argparse | |
| import subprocess | |
| import numpy as np | |
| from tqdm import tqdm | |
| from PIL import Image | |
| from scipy.io import loadmat | |
| import torch | |
| import cv2 | |
| from cog import BasePredictor, Input, Path | |
| sys.path.insert(0, "third_part") | |
| sys.path.insert(0, "third_part/GPEN") | |
| sys.path.insert(0, "third_part/GFPGAN") | |
| # 3dmm extraction | |
| from third_part.face3d.util.preprocess import align_img | |
| from third_part.face3d.util.load_mats import load_lm3d | |
| from third_part.face3d.extract_kp_videos import KeypointExtractor | |
| # face enhancement | |
| from third_part.GPEN.gpen_face_enhancer import FaceEnhancement | |
| from third_part.GFPGAN.gfpgan import GFPGANer | |
| # expression control | |
| from third_part.ganimation_replicate.model.ganimation import GANimationModel | |
| from utils import audio | |
| from utils.ffhq_preprocess import Croper | |
| from utils.alignment_stit import crop_faces, calc_alignment_coefficients, paste_image | |
| from utils.inference_utils import ( | |
| Laplacian_Pyramid_Blending_with_mask, | |
| face_detect, | |
| load_model, | |
| options, | |
| split_coeff, | |
| trans_image, | |
| transform_semantic, | |
| find_crop_norm_ratio, | |
| load_face3d_net, | |
| exp_aus_dict, | |
| ) | |
| class Predictor(BasePredictor): | |
| def setup(self) -> None: | |
| """Load the model into memory to make running multiple predictions efficient""" | |
| self.enhancer = FaceEnhancement( | |
| base_dir="checkpoints", | |
| size=512, | |
| model="GPEN-BFR-512", | |
| use_sr=False, | |
| sr_model="rrdb_realesrnet_psnr", | |
| channel_multiplier=2, | |
| narrow=1, | |
| device="cuda", | |
| ) | |
| self.restorer = GFPGANer( | |
| model_path="checkpoints/GFPGANv1.3.pth", | |
| upscale=1, | |
| arch="clean", | |
| channel_multiplier=2, | |
| bg_upsampler=None, | |
| ) | |
| self.croper = Croper("checkpoints/shape_predictor_68_face_landmarks.dat") | |
| self.kp_extractor = KeypointExtractor() | |
| face3d_net_path = "checkpoints/face3d_pretrain_epoch_20.pth" | |
| self.net_recon = load_face3d_net(face3d_net_path, "cuda") | |
| self.lm3d_std = load_lm3d("checkpoints/BFM") | |
| def predict( | |
| self, | |
| face: Path = Input(description="Input video file of a talking-head."), | |
| input_audio: Path = Input(description="Input audio file."), | |
| ) -> Path: | |
| """Run a single prediction on the model""" | |
| device = "cuda" | |
| args = argparse.Namespace( | |
| DNet_path="checkpoints/DNet.pt", | |
| LNet_path="checkpoints/LNet.pth", | |
| ENet_path="checkpoints/ENet.pth", | |
| face3d_net_path="checkpoints/face3d_pretrain_epoch_20.pth", | |
| face=str(face), | |
| audio=str(input_audio), | |
| exp_img="neutral", | |
| outfile=None, | |
| fps=25, | |
| pads=[0, 20, 0, 0], | |
| face_det_batch_size=4, | |
| LNet_batch_size=16, | |
| img_size=384, | |
| crop=[0, -1, 0, -1], | |
| box=[-1, -1, -1, -1], | |
| nosmooth=False, | |
| static=False, | |
| up_face="original", | |
| one_shot=False, | |
| without_rl1=False, | |
| tmp_dir="temp", | |
| re_preprocess=False, | |
| ) | |
| base_name = args.face.split("/")[-1] | |
| if args.face.split(".")[1] in ["jpg", "png", "jpeg"]: | |
| full_frames = [cv2.imread(args.face)] | |
| args.static = True | |
| fps = args.fps | |
| else: | |
| video_stream = cv2.VideoCapture(args.face) | |
| fps = video_stream.get(cv2.CAP_PROP_FPS) | |
| full_frames = [] | |
| while True: | |
| still_reading, frame = video_stream.read() | |
| if not still_reading: | |
| video_stream.release() | |
| break | |
| y1, y2, x1, x2 = args.crop | |
| if x2 == -1: | |
| x2 = frame.shape[1] | |
| if y2 == -1: | |
| y2 = frame.shape[0] | |
| frame = frame[y1:y2, x1:x2] | |
| full_frames.append(frame) | |
| full_frames_RGB = [ | |
| cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) for frame in full_frames | |
| ] | |
| full_frames_RGB, crop, quad = self.croper.crop(full_frames_RGB, xsize=512) | |
| clx, cly, crx, cry = crop | |
| lx, ly, rx, ry = quad | |
| lx, ly, rx, ry = int(lx), int(ly), int(rx), int(ry) | |
| oy1, oy2, ox1, ox2 = ( | |
| cly + ly, | |
| min(cly + ry, full_frames[0].shape[0]), | |
| clx + lx, | |
| min(clx + rx, full_frames[0].shape[1]), | |
| ) | |
| # original_size = (ox2 - ox1, oy2 - oy1) | |
| frames_pil = [ | |
| Image.fromarray(cv2.resize(frame, (256, 256))) for frame in full_frames_RGB | |
| ] | |
| # get the landmark according to the detected face. | |
| if ( | |
| not os.path.isfile("temp/" + base_name + "_landmarks.txt") | |
| or args.re_preprocess | |
| ): | |
| print("[Step 1] Landmarks Extraction in Video.") | |
| lm = self.kp_extractor.extract_keypoint( | |
| frames_pil, "./temp/" + base_name + "_landmarks.txt" | |
| ) | |
| else: | |
| print("[Step 1] Using saved landmarks.") | |
| lm = np.loadtxt("temp/" + base_name + "_landmarks.txt").astype(np.float32) | |
| lm = lm.reshape([len(full_frames), -1, 2]) | |
| if ( | |
| not os.path.isfile("temp/" + base_name + "_coeffs.npy") | |
| or args.exp_img is not None | |
| or args.re_preprocess | |
| ): | |
| video_coeffs = [] | |
| for idx in tqdm( | |
| range(len(frames_pil)), desc="[Step 2] 3DMM Extraction In Video:" | |
| ): | |
| frame = frames_pil[idx] | |
| W, H = frame.size | |
| lm_idx = lm[idx].reshape([-1, 2]) | |
| if np.mean(lm_idx) == -1: | |
| lm_idx = (self.lm3d_std[:, :2] + 1) / 2.0 | |
| lm_idx = np.concatenate([lm_idx[:, :1] * W, lm_idx[:, 1:2] * H], 1) | |
| else: | |
| lm_idx[:, -1] = H - 1 - lm_idx[:, -1] | |
| trans_params, im_idx, lm_idx, _ = align_img( | |
| frame, lm_idx, self.lm3d_std | |
| ) | |
| trans_params = np.array( | |
| [float(item) for item in np.hsplit(trans_params, 5)] | |
| ).astype(np.float32) | |
| im_idx_tensor = ( | |
| torch.tensor(np.array(im_idx) / 255.0, dtype=torch.float32) | |
| .permute(2, 0, 1) | |
| .to(device) | |
| .unsqueeze(0) | |
| ) | |
| with torch.no_grad(): | |
| coeffs = split_coeff(self.net_recon(im_idx_tensor)) | |
| pred_coeff = {key: coeffs[key].cpu().numpy() for key in coeffs} | |
| pred_coeff = np.concatenate( | |
| [ | |
| pred_coeff["id"], | |
| pred_coeff["exp"], | |
| pred_coeff["tex"], | |
| pred_coeff["angle"], | |
| pred_coeff["gamma"], | |
| pred_coeff["trans"], | |
| trans_params[None], | |
| ], | |
| 1, | |
| ) | |
| video_coeffs.append(pred_coeff) | |
| semantic_npy = np.array(video_coeffs)[:, 0] | |
| np.save("temp/" + base_name + "_coeffs.npy", semantic_npy) | |
| else: | |
| print("[Step 2] Using saved coeffs.") | |
| semantic_npy = np.load("temp/" + base_name + "_coeffs.npy").astype( | |
| np.float32 | |
| ) | |
| # generate the 3dmm coeff from a single image | |
| if args.exp_img == "smile": | |
| expression = torch.tensor( | |
| loadmat("checkpoints/expression.mat")["expression_mouth"] | |
| )[0] | |
| else: | |
| print("using expression center") | |
| expression = torch.tensor( | |
| loadmat("checkpoints/expression.mat")["expression_center"] | |
| )[0] | |
| # load DNet, model(LNet and ENet) | |
| D_Net, model = load_model(args, device) | |
| if ( | |
| not os.path.isfile("temp/" + base_name + "_stablized.npy") | |
| or args.re_preprocess | |
| ): | |
| imgs = [] | |
| for idx in tqdm( | |
| range(len(frames_pil)), | |
| desc="[Step 3] Stabilize the expression In Video:", | |
| ): | |
| if args.one_shot: | |
| source_img = trans_image(frames_pil[0]).unsqueeze(0).to(device) | |
| semantic_source_numpy = semantic_npy[0:1] | |
| else: | |
| source_img = trans_image(frames_pil[idx]).unsqueeze(0).to(device) | |
| semantic_source_numpy = semantic_npy[idx : idx + 1] | |
| ratio = find_crop_norm_ratio(semantic_source_numpy, semantic_npy) | |
| coeff = ( | |
| transform_semantic(semantic_npy, idx, ratio).unsqueeze(0).to(device) | |
| ) | |
| # hacking the new expression | |
| coeff[:, :64, :] = expression[None, :64, None].to(device) | |
| with torch.no_grad(): | |
| output = D_Net(source_img, coeff) | |
| img_stablized = np.uint8( | |
| ( | |
| output["fake_image"] | |
| .squeeze(0) | |
| .permute(1, 2, 0) | |
| .cpu() | |
| .clamp_(-1, 1) | |
| .numpy() | |
| + 1 | |
| ) | |
| / 2.0 | |
| * 255 | |
| ) | |
| imgs.append(cv2.cvtColor(img_stablized, cv2.COLOR_RGB2BGR)) | |
| np.save("temp/" + base_name + "_stablized.npy", imgs) | |
| del D_Net | |
| else: | |
| print("[Step 3] Using saved stabilized video.") | |
| imgs = np.load("temp/" + base_name + "_stablized.npy") | |
| torch.cuda.empty_cache() | |
| if not args.audio.endswith(".wav"): | |
| command = "ffmpeg -loglevel error -y -i {} -strict -2 {}".format( | |
| args.audio, "temp/{}/temp.wav".format(args.tmp_dir) | |
| ) | |
| subprocess.call(command, shell=True) | |
| args.audio = "temp/{}/temp.wav".format(args.tmp_dir) | |
| wav = audio.load_wav(args.audio, 16000) | |
| mel = audio.melspectrogram(wav) | |
| if np.isnan(mel.reshape(-1)).sum() > 0: | |
| raise ValueError( | |
| "Mel contains nan! Using a TTS voice? Add a small epsilon noise to the wav file and try again" | |
| ) | |
| mel_step_size, mel_idx_multiplier, i, mel_chunks = 16, 80.0 / fps, 0, [] | |
| while True: | |
| start_idx = int(i * mel_idx_multiplier) | |
| if start_idx + mel_step_size > len(mel[0]): | |
| mel_chunks.append(mel[:, len(mel[0]) - mel_step_size :]) | |
| break | |
| mel_chunks.append(mel[:, start_idx : start_idx + mel_step_size]) | |
| i += 1 | |
| print("[Step 4] Load audio; Length of mel chunks: {}".format(len(mel_chunks))) | |
| imgs = imgs[: len(mel_chunks)] | |
| full_frames = full_frames[: len(mel_chunks)] | |
| lm = lm[: len(mel_chunks)] | |
| imgs_enhanced = [] | |
| for idx in tqdm(range(len(imgs)), desc="[Step 5] Reference Enhancement"): | |
| img = imgs[idx] | |
| pred, _, _ = self.enhancer.process( | |
| img, img, face_enhance=True, possion_blending=False | |
| ) | |
| imgs_enhanced.append(pred) | |
| gen = datagen( | |
| imgs_enhanced.copy(), mel_chunks, full_frames, args, (oy1, oy2, ox1, ox2) | |
| ) | |
| frame_h, frame_w = full_frames[0].shape[:-1] | |
| out = cv2.VideoWriter( | |
| "temp/{}/result.mp4".format(args.tmp_dir), | |
| cv2.VideoWriter_fourcc(*"mp4v"), | |
| fps, | |
| (frame_w, frame_h), | |
| ) | |
| if args.up_face != "original": | |
| instance = GANimationModel() | |
| instance.initialize() | |
| instance.setup() | |
| # kp_extractor = KeypointExtractor() | |
| for i, ( | |
| img_batch, | |
| mel_batch, | |
| frames, | |
| coords, | |
| img_original, | |
| f_frames, | |
| ) in enumerate( | |
| tqdm( | |
| gen, | |
| desc="[Step 6] Lip Synthesis:", | |
| total=int(np.ceil(float(len(mel_chunks)) / args.LNet_batch_size)), | |
| ) | |
| ): | |
| img_batch = torch.FloatTensor(np.transpose(img_batch, (0, 3, 1, 2))).to( | |
| device | |
| ) | |
| mel_batch = torch.FloatTensor(np.transpose(mel_batch, (0, 3, 1, 2))).to( | |
| device | |
| ) | |
| img_original = ( | |
| torch.FloatTensor(np.transpose(img_original, (0, 3, 1, 2))).to(device) | |
| / 255.0 | |
| ) # BGR -> RGB | |
| with torch.no_grad(): | |
| incomplete, reference = torch.split(img_batch, 3, dim=1) | |
| pred, low_res = model(mel_batch, img_batch, reference) | |
| pred = torch.clamp(pred, 0, 1) | |
| if args.up_face in ["sad", "angry", "surprise"]: | |
| tar_aus = exp_aus_dict[args.up_face] | |
| else: | |
| pass | |
| if args.up_face == "original": | |
| cur_gen_faces = img_original | |
| else: | |
| test_batch = { | |
| "src_img": torch.nn.functional.interpolate( | |
| (img_original * 2 - 1), size=(128, 128), mode="bilinear" | |
| ), | |
| "tar_aus": tar_aus.repeat(len(incomplete), 1), | |
| } | |
| instance.feed_batch(test_batch) | |
| instance.forward() | |
| cur_gen_faces = torch.nn.functional.interpolate( | |
| instance.fake_img / 2.0 + 0.5, size=(384, 384), mode="bilinear" | |
| ) | |
| if args.without_rl1 is not False: | |
| incomplete, reference = torch.split(img_batch, 3, dim=1) | |
| mask = torch.where( | |
| incomplete == 0, | |
| torch.ones_like(incomplete), | |
| torch.zeros_like(incomplete), | |
| ) | |
| pred = pred * mask + cur_gen_faces * (1 - mask) | |
| pred = pred.cpu().numpy().transpose(0, 2, 3, 1) * 255.0 | |
| torch.cuda.empty_cache() | |
| for p, f, xf, c in zip(pred, frames, f_frames, coords): | |
| y1, y2, x1, x2 = c | |
| p = cv2.resize(p.astype(np.uint8), (x2 - x1, y2 - y1)) | |
| ff = xf.copy() | |
| ff[y1:y2, x1:x2] = p | |
| # month region enhancement by GFPGAN | |
| cropped_faces, restored_faces, restored_img = self.restorer.enhance( | |
| ff, has_aligned=False, only_center_face=True, paste_back=True | |
| ) | |
| # 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, | |
| mm = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 255, 255, 255, 0, 0, 0, 0, 0, 0] | |
| mouse_mask = np.zeros_like(restored_img) | |
| tmp_mask = self.enhancer.faceparser.process( | |
| restored_img[y1:y2, x1:x2], mm | |
| )[0] | |
| mouse_mask[y1:y2, x1:x2] = ( | |
| cv2.resize(tmp_mask, (x2 - x1, y2 - y1))[:, :, np.newaxis] / 255.0 | |
| ) | |
| height, width = ff.shape[:2] | |
| restored_img, ff, full_mask = [ | |
| cv2.resize(x, (512, 512)) | |
| for x in (restored_img, ff, np.float32(mouse_mask)) | |
| ] | |
| img = Laplacian_Pyramid_Blending_with_mask( | |
| restored_img, ff, full_mask[:, :, 0], 10 | |
| ) | |
| pp = np.uint8(cv2.resize(np.clip(img, 0, 255), (width, height))) | |
| pp, orig_faces, enhanced_faces = self.enhancer.process( | |
| pp, xf, bbox=c, face_enhance=False, possion_blending=True | |
| ) | |
| out.write(pp) | |
| out.release() | |
| output_file = "/tmp/output.mp4" | |
| command = "ffmpeg -loglevel error -y -i {} -i {} -strict -2 -q:v 1 {}".format( | |
| args.audio, "temp/{}/result.mp4".format(args.tmp_dir), output_file | |
| ) | |
| subprocess.call(command, shell=True) | |
| return Path(output_file) | |
| # frames:256x256, full_frames: original size | |
| def datagen(frames, mels, full_frames, args, cox): | |
| img_batch, mel_batch, frame_batch, coords_batch, ref_batch, full_frame_batch = ( | |
| [], | |
| [], | |
| [], | |
| [], | |
| [], | |
| [], | |
| ) | |
| base_name = args.face.split("/")[-1] | |
| refs = [] | |
| image_size = 256 | |
| # original frames | |
| kp_extractor = KeypointExtractor() | |
| fr_pil = [Image.fromarray(frame) for frame in frames] | |
| lms = kp_extractor.extract_keypoint( | |
| fr_pil, "temp/" + base_name + "x12_landmarks.txt" | |
| ) | |
| frames_pil = [ | |
| (lm, frame) for frame, lm in zip(fr_pil, lms) | |
| ] # frames is the croped version of modified face | |
| crops, orig_images, quads = crop_faces( | |
| image_size, frames_pil, scale=1.0, use_fa=True | |
| ) | |
| inverse_transforms = [ | |
| calc_alignment_coefficients( | |
| quad + 0.5, | |
| [[0, 0], [0, image_size], [image_size, image_size], [image_size, 0]], | |
| ) | |
| for quad in quads | |
| ] | |
| del kp_extractor.detector | |
| oy1, oy2, ox1, ox2 = cox | |
| face_det_results = face_detect(full_frames, args, jaw_correction=True) | |
| for inverse_transform, crop, full_frame, face_det in zip( | |
| inverse_transforms, crops, full_frames, face_det_results | |
| ): | |
| imc_pil = paste_image( | |
| inverse_transform, | |
| crop, | |
| Image.fromarray( | |
| cv2.resize( | |
| full_frame[int(oy1) : int(oy2), int(ox1) : int(ox2)], (256, 256) | |
| ) | |
| ), | |
| ) | |
| ff = full_frame.copy() | |
| ff[int(oy1) : int(oy2), int(ox1) : int(ox2)] = cv2.resize( | |
| np.array(imc_pil.convert("RGB")), (ox2 - ox1, oy2 - oy1) | |
| ) | |
| oface, coords = face_det | |
| y1, y2, x1, x2 = coords | |
| refs.append(ff[y1:y2, x1:x2]) | |
| for i, m in enumerate(mels): | |
| idx = 0 if args.static else i % len(frames) | |
| frame_to_save = frames[idx].copy() | |
| face = refs[idx] | |
| oface, coords = face_det_results[idx].copy() | |
| face = cv2.resize(face, (args.img_size, args.img_size)) | |
| oface = cv2.resize(oface, (args.img_size, args.img_size)) | |
| img_batch.append(oface) | |
| ref_batch.append(face) | |
| mel_batch.append(m) | |
| coords_batch.append(coords) | |
| frame_batch.append(frame_to_save) | |
| full_frame_batch.append(full_frames[idx].copy()) | |
| if len(img_batch) >= args.LNet_batch_size: | |
| img_batch, mel_batch, ref_batch = ( | |
| np.asarray(img_batch), | |
| np.asarray(mel_batch), | |
| np.asarray(ref_batch), | |
| ) | |
| img_masked = img_batch.copy() | |
| img_original = img_batch.copy() | |
| img_masked[:, args.img_size // 2 :] = 0 | |
| img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0 | |
| mel_batch = np.reshape( | |
| mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1] | |
| ) | |
| yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch | |
| ( | |
| img_batch, | |
| mel_batch, | |
| frame_batch, | |
| coords_batch, | |
| img_original, | |
| full_frame_batch, | |
| ref_batch, | |
| ) = ([], [], [], [], [], [], []) | |
| if len(img_batch) > 0: | |
| img_batch, mel_batch, ref_batch = ( | |
| np.asarray(img_batch), | |
| np.asarray(mel_batch), | |
| np.asarray(ref_batch), | |
| ) | |
| img_masked = img_batch.copy() | |
| img_original = img_batch.copy() | |
| img_masked[:, args.img_size // 2 :] = 0 | |
| img_batch = np.concatenate((img_masked, ref_batch), axis=3) / 255.0 | |
| mel_batch = np.reshape( | |
| mel_batch, [len(mel_batch), mel_batch.shape[1], mel_batch.shape[2], 1] | |
| ) | |
| yield img_batch, mel_batch, frame_batch, coords_batch, img_original, full_frame_batch | |