File size: 2,325 Bytes
68653c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
# def translate_and_speak(text):
#     input_text = "en " + text
#     encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
#     generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
#     output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)

#     for tag in ["__en__", "__sa__", "en", "sa"]:
#         output = output.replace(tag, "")
#     sanskrit_text = output.strip()

#     # Convert to speech
#     tts = gTTS(sanskrit_text, lang='hi')
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
#         tts.save(fp.name)
#         audio_path = fp.name

#     return sanskrit_text, audio_path
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import torch
from gtts import gTTS
import gradio as gr
import tempfile



# Load model and tokenizer
model__name = "Helsinki-NLP/opus-mt-en-hi"


# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)


model_name = "SweUmaVarsh/m2m100-en-sa-translation"
tokenizer = M2M100Tokenizer.from_pretrained(model_name)
model = M2M100ForConditionalGeneration.from_pretrained(model_name)



def translate_and_speak(text):
    input_text = "en " + text
    encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
    generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
    output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)

    for tag in ["__en__", "__sa__", "en", "sa"]:
        output = output.replace(tag, "")
    sanskrit_text = output.strip()

    # Convert to speech
    tts = gTTS(sanskrit_text, lang='hi')
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
        tts.save(fp.name)
        audio_path = fp.name

    return sanskrit_text, audio_path

iface = gr.Interface(
    fn=translate_and_speak,
    inputs=gr.Textbox(label="Enter English Text"),
    outputs=[gr.Textbox(label="Sanskrit Translation"), gr.Audio(label="Sanskrit Speech")],
    title="Final Year Project: English to Sanskrit Translator (IT 'A' 2021–2025)",
    description="Enter a sentence in English to get its Sanskrit translation and audio output."
)

iface.launch()