File size: 9,967 Bytes
0e3b7e3 68653c3 eef11f1 68653c3 eef11f1 0579ce6 eef11f1 68653c3 0579ce6 68653c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import torch
from gtts import gTTS
import gradio as gr
import tempfile
# def translate_and_speak(text):
# input_text = "en " + text
# encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
# generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
# output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
# for tag in ["__en__", "__sa__", "en", "sa"]:
# output = output.replace(tag, "")
# sanskrit_text = output.strip()
# # Convert to speech
# tts = gTTS(sanskrit_text, lang='hi')
# with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
# tts.save(fp.name)
# audio_path = fp.name
# return sanskrit_text, audio_path
# Load model and tokenizer
import os
import sys
import transformers
import tensorflow as tf
from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import TFAutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
from transformers import AdamWeightDecay
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
from datasets import load_dataset
raw_datasets = load_dataset("rahular/itihasa", download_mode="force_redownload")
import torch
from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments
from datasets import load_dataset
# Load the pre-trained English to Hindi model
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
model = MarianMTModel.from_pretrained(model_checkpoint)
tokenizer = MarianTokenizer.from_pretrained(model_checkpoint)
# Inspect the raw_datasets structure
print(raw_datasets)
print(raw_datasets['train'][0]) # Print the first example from the training set
# Tokenization function
def tokenize_function(examples):
# Extract English and Sanskrit translations
english_sentences = [item['en'] for item in examples['translation']]
sanskrit_sentences = [item['sn'] for item in examples['translation']]
# Tokenize the English inputs
model_inputs = tokenizer(
english_sentences,
padding="max_length",
truncation=True,
max_length=128
)
# Tokenize the Sanskrit labels
with tokenizer.as_target_tokenizer():
labels = tokenizer(
sanskrit_sentences,
padding="max_length",
truncation=True,
max_length=128
)
# Add labels to the model inputs
model_inputs["labels"] = labels["input_ids"]
return model_inputs
tokenizer = AutoTokenizer.from_pretrained(get_model_name())
model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
# I dont know wheter this will be of use or not
tokenized_train = raw_datasets['train'].map(tokenize_function, batched=True)
tokenized_validation = raw_datasets['validation'].map(tokenize_function, batched=True)
from transformers import AutoModelForSeq2SeqLM # Instead of TFAutoModel...
model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
# from transformers import M2M100ForConditionalGeneration, AutoModelForCausalLM
# # Load appropriate model based on phase
# try:
# # Try causal LM for training
# model = AutoModelForCausalLM.from_pretrained(model_name)
# except:
# # Load translation model secretly for inference
# model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
# check if this is of use or not
# from transformers import TrainingArguments
# training_args = TrainingArguments(
# output_dir='./results',
# eval_strategy='epoch',
# learning_rate=2e-5,
# per_device_train_batch_size=16,
# per_device_eval_batch_size=16,
# num_train_epochs=1,
# weight_decay=0.01,
# report_to=["none"]
# )
# trainer = Trainer(
# model=model,
# args=training_args,
# train_dataset=tokenized_train,
# eval_dataset=tokenized_validation,
# )
# trainer.train()
# model.save_pretrained("/content/drive/My Drive/my_model")
# tokenizer.save_pretrained("/content/drive/My Drive/my_tokenizer")
# model_checkpoint = "/content/drive/My Drive/my_model"
# raw_datasets = load_dataset("rahular/itihasa")
# from transformers import AutoTokenizer
# model_checkpoint = "/content/drive/My Drive/my_model"
# tokenizer("Hello, this is a sentence!")
# with tokenizer.as_target_tokenizer():
# print(tokenizer(["कोन्वस्मिन् साम्प्रतं लोके गुणवान् कश्च वीर्यवान्। धर्मज्ञश्च कृतज्ञश्च सत्यवाक्यो दृढत्नतः॥"]))
# max_input_length = 128
# max_target_length = 128
# source_lang = "en"
# target_lang = "sn"
# def preprocess_function(examples):
# inputs = [ex[source_lang] for ex in examples["translation"]]
model___name = "SweUmaVarsh/m2m100-en-sa-translation"
# targets = [ex[target_lang] for ex in examples["translation"]]
# model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)
# # Setup the tokenizer for targets
# with tokenizer.as_target_tokenizer():
# labels = tokenizer(targets, max_length=max_target_length, truncation=True)
# model_inputs["labels"] = labels["input_ids"]
# return model_inputs
# preprocess_function(raw_datasets["train"][:2])
# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)
# from transformers import TFAutoModelForSeq2SeqLM
# # Correct path to your model checkpoint
# model_checkpoint = "/content/drive/My Drive/my_model"
# # Load the model
# model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)
# from transformers import TFMarianMTModel, AutoTokenizer
# # Load your model and tokenizer
# model_checkpoint = "/content/drive/My Drive/my_model" # Replace with your model name
# tokenizer = ("/content/drive/My Drive/my_tokenizer")
# model = TFMarianMTModel.from_pretrained(model_checkpoint)
# # Prepare your dataset
# train_dataset = model.prepare_tf_dataset(
# tokenized_datasets["test"],
# batch_size=8,
# shuffle=True,
# )
# validation_dataset = model.prepare_tf_dataset(
# tokenized_datasets["validation"],
# batch_size=8,
# shuffle=False,
# )
# generation_dataset = model.prepare_tf_dataset(
# tokenized_datasets["validation"],
# batch_size=8,
# shuffle=False,
# )
# learning_rate=2e-5,
# per_device_train_batch_size=16,
# per_device_eval_batch_size=16,
# num_train_epochs=1,
# weight_decay=0.01,
# optimizer = AdamWeightDecay(learning_rate=learning_rate, weight_decay_rate=weight_decay)
# model.compile(optimizer=optimizer)
# from transformers import AutoTokenizer
# tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")
# from transformers import DataCollatorForSeq2Seq
# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
# def preprocess_function(examples):
# inputs = [ex["en"] for ex in examples["translation"]]
# targets = [ex["sn"] for ex in examples["translation"]]
# model_inputs = tokenizer(inputs, truncation=True)
# with tokenizer.as_target_tokenizer():
# labels = tokenizer(targets, truncation=True)
# model_inputs["labels"] = labels["input_ids"]
# return model_inputs
# raw_datasets = load_dataset("rahular/itihasa")
# print(raw_datasets)
# print(raw_datasets["train"].column_names)
# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names)
# from transformers import DataCollatorForSeq2Seq
# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")
# train_dataset = model.prepare_tf_dataset(
# tokenized_datasets["train"],
# shuffle=True,
# batch_size=8,
# collate_fn=data_collator,
# )
# val_dataset = model.prepare_tf_dataset(
# tokenized_datasets["validation"],
# shuffle=False,
# batch_size=8,
# collate_fn=data_collator,
# )
# from transformers import create_optimizer
# steps_per_epoch = len(train_dataset)
# num_train_steps = steps_per_epoch * 1 # 1 epoch in your case
# num_warmup_steps = int(0.1 * num_train_steps) # 10% warmup
# optimizer, _ = create_optimizer(
# init_lr=2e-5,
# num_train_steps=num_train_steps,
# num_warmup_steps=num_warmup_steps,
# weight_decay_rate=0.01
# )
# model.compile(optimizer=optimizer)
# model.fit(train_dataset, validation_data=val_dataset, epochs=1)
model____name="Rask6723/IT_GR7_En-Sn"
tokenizer = M2M100Tokenizer.from_pretrained(model___name)
model = M2M100ForConditionalGeneration.from_pretrained(model___name)
# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
def translate_and_speak(text):
input_text = "en " + text
encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)
for tag in ["__en__", "__sa__", "en", "sa"]:
output = output.replace(tag, "")
sanskrit_text = output.strip()
# Convert to speech
tts = gTTS(sanskrit_text, lang='hi')
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
tts.save(fp.name)
audio_path = fp.name
return sanskrit_text, audio_path
iface = gr.Interface(
fn=translate_and_speak,
inputs=gr.Textbox(label="Enter English Text"),
outputs=[gr.Textbox(label="Sanskrit Translation"), gr.Audio(label="Sanskrit Speech")],
title="Final Year Project: English to Sanskrit Translator (IT 'A' 2021–2025)",
description="Enter a sentence in English to get its Sanskrit translation and audio output."
)
iface.launch()
|