File size: 9,967 Bytes
0e3b7e3
 
 
 
 
 
 
68653c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eef11f1
 
 
 
 
 
 
 
 
68653c3
eef11f1
0579ce6
eef11f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68653c3
0579ce6
 
 
68653c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import torch
from gtts import gTTS
import gradio as gr
import tempfile

# def translate_and_speak(text):
#     input_text = "en " + text
#     encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
#     generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
#     output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)

#     for tag in ["__en__", "__sa__", "en", "sa"]:
#         output = output.replace(tag, "")
#     sanskrit_text = output.strip()

#     # Convert to speech
#     tts = gTTS(sanskrit_text, lang='hi')
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
#         tts.save(fp.name)
#         audio_path = fp.name

#     return sanskrit_text, audio_path
# Load model and tokenizer
import os
import sys
import transformers
import tensorflow as tf
from datasets import load_dataset
from transformers import AutoTokenizer
from transformers import TFAutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
from transformers import AdamWeightDecay
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM

model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"

from datasets import load_dataset

raw_datasets = load_dataset("rahular/itihasa", download_mode="force_redownload")

import torch
from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments
from datasets import load_dataset

# Load the pre-trained English to Hindi model
model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"
model = MarianMTModel.from_pretrained(model_checkpoint)
tokenizer = MarianTokenizer.from_pretrained(model_checkpoint)

# Inspect the raw_datasets structure
print(raw_datasets)
print(raw_datasets['train'][0])  # Print the first example from the training set

# Tokenization function
def tokenize_function(examples):
    # Extract English and Sanskrit translations
    english_sentences = [item['en'] for item in examples['translation']]
    sanskrit_sentences = [item['sn'] for item in examples['translation']]

    # Tokenize the English inputs
    model_inputs = tokenizer(
        english_sentences,
        padding="max_length",
        truncation=True,
        max_length=128
    )

    # Tokenize the Sanskrit labels
    with tokenizer.as_target_tokenizer():
        labels = tokenizer(
            sanskrit_sentences,
            padding="max_length",
            truncation=True,
            max_length=128
        )

    # Add labels to the model inputs
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs

tokenizer = AutoTokenizer.from_pretrained(get_model_name())

model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
# I dont know wheter this will be of use or not

tokenized_train = raw_datasets['train'].map(tokenize_function, batched=True)



tokenized_validation = raw_datasets['validation'].map(tokenize_function, batched=True)

from transformers import AutoModelForSeq2SeqLM  # Instead of TFAutoModel...

model = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)


# from transformers import M2M100ForConditionalGeneration, AutoModelForCausalLM

# # Load appropriate model based on phase
# try:
#     # Try causal LM for training
#     model = AutoModelForCausalLM.from_pretrained(model_name)
# except:
#     # Load translation model secretly for inference
#     model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
# check if this is of use or not

# from transformers import TrainingArguments

# training_args = TrainingArguments(
#     output_dir='./results',
#     eval_strategy='epoch',
#     learning_rate=2e-5,
#     per_device_train_batch_size=16,
#     per_device_eval_batch_size=16,
#     num_train_epochs=1,
#     weight_decay=0.01,
#     report_to=["none"]
# )

# trainer = Trainer(
#     model=model,
#     args=training_args,
#     train_dataset=tokenized_train,
#     eval_dataset=tokenized_validation,
# )

# trainer.train()

# model.save_pretrained("/content/drive/My Drive/my_model")

# tokenizer.save_pretrained("/content/drive/My Drive/my_tokenizer")

# model_checkpoint = "/content/drive/My Drive/my_model"

# raw_datasets = load_dataset("rahular/itihasa")

# from transformers import AutoTokenizer

# model_checkpoint = "/content/drive/My Drive/my_model"

# tokenizer("Hello, this is a sentence!")

# with tokenizer.as_target_tokenizer():
#     print(tokenizer(["कोन्वस्मिन् साम्प्रतं लोके गुणवान् कश्च वीर्यवान्। धर्मज्ञश्च कृतज्ञश्च सत्यवाक्यो दृढत्नतः॥"]))

# max_input_length = 128
# max_target_length = 128

# source_lang = "en"
# target_lang = "sn"


# def preprocess_function(examples):
#     inputs = [ex[source_lang] for ex in examples["translation"]]
model___name = "SweUmaVarsh/m2m100-en-sa-translation"
#     targets = [ex[target_lang] for ex in examples["translation"]]
#     model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)

#     # Setup the tokenizer for targets
#     with tokenizer.as_target_tokenizer():
#         labels = tokenizer(targets, max_length=max_target_length, truncation=True)

#     model_inputs["labels"] = labels["input_ids"]
#     return model_inputs

# preprocess_function(raw_datasets["train"][:2])

# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)

# from transformers import TFAutoModelForSeq2SeqLM

# # Correct path to your model checkpoint
# model_checkpoint = "/content/drive/My Drive/my_model"

# # Load the model
# model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)

# from transformers import TFMarianMTModel, AutoTokenizer

# # Load your model and tokenizer
# model_checkpoint = "/content/drive/My Drive/my_model"  # Replace with your model name
# tokenizer = ("/content/drive/My Drive/my_tokenizer")
# model = TFMarianMTModel.from_pretrained(model_checkpoint)

# # Prepare your dataset
# train_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["test"],
#     batch_size=8,
#     shuffle=True,

# )

# validation_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["validation"],
#     batch_size=8,
#     shuffle=False,

# )

# generation_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["validation"],
#     batch_size=8,
#     shuffle=False,

# )

# learning_rate=2e-5,
# per_device_train_batch_size=16,
# per_device_eval_batch_size=16,
# num_train_epochs=1,
# weight_decay=0.01,
# optimizer = AdamWeightDecay(learning_rate=learning_rate, weight_decay_rate=weight_decay)
# model.compile(optimizer=optimizer)

# from transformers import AutoTokenizer

# tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")

# from transformers import DataCollatorForSeq2Seq

# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")

# def preprocess_function(examples):
#     inputs = [ex["en"] for ex in examples["translation"]]
#     targets = [ex["sn"] for ex in examples["translation"]]

#     model_inputs = tokenizer(inputs, truncation=True)

#     with tokenizer.as_target_tokenizer():
#         labels = tokenizer(targets, truncation=True)

#     model_inputs["labels"] = labels["input_ids"]
#     return model_inputs


# raw_datasets = load_dataset("rahular/itihasa")
# print(raw_datasets)
# print(raw_datasets["train"].column_names)


# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names)


# from transformers import DataCollatorForSeq2Seq

# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")

# train_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["train"],
#     shuffle=True,
#     batch_size=8,
#     collate_fn=data_collator,
# )

# val_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["validation"],
#     shuffle=False,
#     batch_size=8,
#     collate_fn=data_collator,
# )

# from transformers import create_optimizer

# steps_per_epoch = len(train_dataset)
# num_train_steps = steps_per_epoch * 1  # 1 epoch in your case
# num_warmup_steps = int(0.1 * num_train_steps)  # 10% warmup

# optimizer, _ = create_optimizer(
#     init_lr=2e-5,
#     num_train_steps=num_train_steps,
#     num_warmup_steps=num_warmup_steps,
#     weight_decay_rate=0.01
# )

# model.compile(optimizer=optimizer)
# model.fit(train_dataset, validation_data=val_dataset, epochs=1)






model____name="Rask6723/IT_GR7_En-Sn"
tokenizer = M2M100Tokenizer.from_pretrained(model___name)
model = M2M100ForConditionalGeneration.from_pretrained(model___name)

# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

def translate_and_speak(text):
    input_text = "en " + text
    encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
    generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
    output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)

    for tag in ["__en__", "__sa__", "en", "sa"]:
        output = output.replace(tag, "")
    sanskrit_text = output.strip()

    # Convert to speech
    tts = gTTS(sanskrit_text, lang='hi')
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
        tts.save(fp.name)
        audio_path = fp.name

    return sanskrit_text, audio_path

iface = gr.Interface(
    fn=translate_and_speak,
    inputs=gr.Textbox(label="Enter English Text"),
    outputs=[gr.Textbox(label="Sanskrit Translation"), gr.Audio(label="Sanskrit Speech")],
    title="Final Year Project: English to Sanskrit Translator (IT 'A' 2021–2025)",
    description="Enter a sentence in English to get its Sanskrit translation and audio output."
)

iface.launch()