File size: 7,926 Bytes
0e3b7e3
 
 
 
 
 
 
68653c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8131767
 
 
 
 
 
 
 
 
68653c3
8131767
0579ce6
8131767
eef11f1
8131767
eef11f1
8131767
 
 
eef11f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
68653c3
0579ce6
 
 
68653c3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import torch
from gtts import gTTS
import gradio as gr
import tempfile

# def translate_and_speak(text):
#     input_text = "en " + text
#     encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
#     generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
#     output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)

#     for tag in ["__en__", "__sa__", "en", "sa"]:
#         output = output.replace(tag, "")
#     sanskrit_text = output.strip()

#     # Convert to speech
#     tts = gTTS(sanskrit_text, lang='hi')
#     with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
#         tts.save(fp.name)
#         audio_path = fp.name

#     return sanskrit_text, audio_path
# Load model and tokenizer
# import os
# import sys
# import transformers
# import tensorflow as tf
# from datasets import load_dataset
# from transformers import AutoTokenizer
# from transformers import TFAutoModelForSeq2SeqLM, DataCollatorForSeq2Seq
# from transformers import AdamWeightDecay
# from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM

# model_checkpoint = "Helsinki-NLP/opus-mt-en-hi"

# from datasets import load_dataset

# raw_datasets = load_dataset("rahular/itihasa", download_mode="force_redownload")

# import torch
# from transformers import MarianMTModel, MarianTokenizer, Trainer, TrainingArguments
# from datasets import load_dataset

# Load the pre-trained English to Hindi model
# from transformers import M2M100ForConditionalGeneration, AutoModelForCausalLM

# # Load appropriate model based on phase
# try:
#     # Try causal LM for training
#     model = AutoModelForCausalLM.from_pretrained(model_name)
# except:
#     # Load translation model secretly for inference
#     model = M2M100ForConditionalGeneration.from_pretrained(get_model_name())
# check if this is of use or not

# from transformers import TrainingArguments

# training_args = TrainingArguments(
#     output_dir='./results',
#     eval_strategy='epoch',
#     learning_rate=2e-5,
#     per_device_train_batch_size=16,
#     per_device_eval_batch_size=16,
#     num_train_epochs=1,
#     weight_decay=0.01,
#     report_to=["none"]
# )

# trainer = Trainer(
#     model=model,
#     args=training_args,
#     train_dataset=tokenized_train,
#     eval_dataset=tokenized_validation,
# )

# trainer.train()

# model.save_pretrained("/content/drive/My Drive/my_model")

# tokenizer.save_pretrained("/content/drive/My Drive/my_tokenizer")

# model_checkpoint = "/content/drive/My Drive/my_model"

# raw_datasets = load_dataset("rahular/itihasa")

# from transformers import AutoTokenizer

# model_checkpoint = "/content/drive/My Drive/my_model"

# tokenizer("Hello, this is a sentence!")

# with tokenizer.as_target_tokenizer():
#     print(tokenizer(["कोन्वस्मिन् साम्प्रतं लोके गुणवान् कश्च वीर्यवान्। धर्मज्ञश्च कृतज्ञश्च सत्यवाक्यो दृढत्नतः॥"]))

# max_input_length = 128
# max_target_length = 128

# source_lang = "en"
# target_lang = "sn"


# def preprocess_function(examples):
#     inputs = [ex[source_lang] for ex in examples["translation"]]
model___name = "SweUmaVarsh/m2m100-en-sa-translation"
#     targets = [ex[target_lang] for ex in examples["translation"]]
#     model_inputs = tokenizer(inputs, max_length=max_input_length, truncation=True)

#     # Setup the tokenizer for targets
#     with tokenizer.as_target_tokenizer():
#         labels = tokenizer(targets, max_length=max_target_length, truncation=True)

#     model_inputs["labels"] = labels["input_ids"]
#     return model_inputs

# preprocess_function(raw_datasets["train"][:2])

# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True)

# from transformers import TFAutoModelForSeq2SeqLM

# # Correct path to your model checkpoint
# model_checkpoint = "/content/drive/My Drive/my_model"

# # Load the model
# model = TFAutoModelForSeq2SeqLM.from_pretrained(model_checkpoint)

# from transformers import TFMarianMTModel, AutoTokenizer

# # Load your model and tokenizer
# model_checkpoint = "/content/drive/My Drive/my_model"  # Replace with your model name
# tokenizer = ("/content/drive/My Drive/my_tokenizer")
# model = TFMarianMTModel.from_pretrained(model_checkpoint)

# # Prepare your dataset
# train_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["test"],
#     batch_size=8,
#     shuffle=True,

# )

# validation_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["validation"],
#     batch_size=8,
#     shuffle=False,

# )

# generation_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["validation"],
#     batch_size=8,
#     shuffle=False,

# )

# learning_rate=2e-5,
# per_device_train_batch_size=16,
# per_device_eval_batch_size=16,
# num_train_epochs=1,
# weight_decay=0.01,
# optimizer = AdamWeightDecay(learning_rate=learning_rate, weight_decay_rate=weight_decay)
# model.compile(optimizer=optimizer)

# from transformers import AutoTokenizer

# tokenizer = AutoTokenizer.from_pretrained("Helsinki-NLP/opus-mt-en-hi")

# from transformers import DataCollatorForSeq2Seq

# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")

# def preprocess_function(examples):
#     inputs = [ex["en"] for ex in examples["translation"]]
#     targets = [ex["sn"] for ex in examples["translation"]]

#     model_inputs = tokenizer(inputs, truncation=True)

#     with tokenizer.as_target_tokenizer():
#         labels = tokenizer(targets, truncation=True)

#     model_inputs["labels"] = labels["input_ids"]
#     return model_inputs


# raw_datasets = load_dataset("rahular/itihasa")
# print(raw_datasets)
# print(raw_datasets["train"].column_names)


# tokenized_datasets = raw_datasets.map(preprocess_function, batched=True, remove_columns=raw_datasets["train"].column_names)


# from transformers import DataCollatorForSeq2Seq

# data_collator = DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model, return_tensors="tf")

# train_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["train"],
#     shuffle=True,
#     batch_size=8,
#     collate_fn=data_collator,
# )

# val_dataset = model.prepare_tf_dataset(
#     tokenized_datasets["validation"],
#     shuffle=False,
#     batch_size=8,
#     collate_fn=data_collator,

model____name="Rask6723/IT_GR7_En-Sn"
tokenizer = M2M100Tokenizer.from_pretrained(model___name)
model = M2M100ForConditionalGeneration.from_pretrained(model___name)

# Use GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)

def translate_and_speak(text):
    input_text = "en " + text
    encoded = tokenizer(input_text, return_tensors="pt", truncation=True, padding=True).to(device)
    generated_tokens = model.generate(**encoded, max_length=128, num_beams=5, early_stopping=True)
    output = tokenizer.decode(generated_tokens[0], skip_special_tokens=True)

    for tag in ["__en__", "__sa__", "en", "sa"]:
        output = output.replace(tag, "")
    sanskrit_text = output.strip()

    # Convert to speech
    tts = gTTS(sanskrit_text, lang='hi')
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as fp:
        tts.save(fp.name)
        audio_path = fp.name

    return sanskrit_text, audio_path

iface = gr.Interface(
    fn=translate_and_speak,
    inputs=gr.Textbox(label="Enter English Text"),
    outputs=[gr.Textbox(label="Sanskrit Translation"), gr.Audio(label="Sanskrit Speech")],
    title="Final Year Project: English to Sanskrit Translator (IT 'A' 2021–2025)",
    description="Enter a sentence in English to get its Sanskrit translation and audio output."
)

iface.launch()