Changed model for DocVQA and added task
Browse files
app.py
CHANGED
|
@@ -16,22 +16,12 @@ import numpy as np
|
|
| 16 |
import subprocess
|
| 17 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(),
|
| 21 |
-
'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval(),
|
| 22 |
-
'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to("cuda").eval(),
|
| 23 |
-
'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(),
|
| 24 |
-
}
|
| 25 |
|
| 26 |
-
|
| 27 |
-
'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
|
| 28 |
-
'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True),
|
| 29 |
-
'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True),
|
| 30 |
-
'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True),
|
| 31 |
-
}
|
| 32 |
|
| 33 |
|
| 34 |
-
DESCRIPTION = "# [Florence-2 Demo](https://huggingface.co/
|
| 35 |
|
| 36 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
| 37 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
|
@@ -43,9 +33,9 @@ def fig_to_pil(fig):
|
|
| 43 |
return Image.open(buf)
|
| 44 |
|
| 45 |
@spaces.GPU
|
| 46 |
-
def run_example(task_prompt, image, text_input=None
|
| 47 |
-
model =
|
| 48 |
-
processor =
|
| 49 |
if text_input is None:
|
| 50 |
prompt = task_prompt
|
| 51 |
else:
|
|
@@ -123,71 +113,75 @@ def draw_ocr_bboxes(image, prediction):
|
|
| 123 |
|
| 124 |
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'):
|
| 125 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 126 |
-
if task_prompt == '
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
task_prompt = '<CAPTION>'
|
| 128 |
-
results = run_example(task_prompt, image
|
| 129 |
return results, None
|
| 130 |
elif task_prompt == 'Detailed Caption':
|
| 131 |
task_prompt = '<DETAILED_CAPTION>'
|
| 132 |
-
results = run_example(task_prompt, image
|
| 133 |
return results, None
|
| 134 |
elif task_prompt == 'More Detailed Caption':
|
| 135 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
| 136 |
-
results = run_example(task_prompt, image
|
| 137 |
return results, None
|
| 138 |
elif task_prompt == 'Object Detection':
|
| 139 |
task_prompt = '<OD>'
|
| 140 |
-
results = run_example(task_prompt, image
|
| 141 |
fig = plot_bbox(image, results['<OD>'])
|
| 142 |
return results, fig_to_pil(fig)
|
| 143 |
elif task_prompt == 'Dense Region Caption':
|
| 144 |
task_prompt = '<DENSE_REGION_CAPTION>'
|
| 145 |
-
results = run_example(task_prompt, image
|
| 146 |
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 147 |
return results, fig_to_pil(fig)
|
| 148 |
elif task_prompt == 'Region Proposal':
|
| 149 |
task_prompt = '<REGION_PROPOSAL>'
|
| 150 |
-
results = run_example(task_prompt, image
|
| 151 |
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 152 |
return results, fig_to_pil(fig)
|
| 153 |
elif task_prompt == 'Caption to Phrase Grounding':
|
| 154 |
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
| 155 |
-
results = run_example(task_prompt, image, text_input
|
| 156 |
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 157 |
return results, fig_to_pil(fig)
|
| 158 |
elif task_prompt == 'Referring Expression Segmentation':
|
| 159 |
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
| 160 |
-
results = run_example(task_prompt, image, text_input
|
| 161 |
output_image = copy.deepcopy(image)
|
| 162 |
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 163 |
return results, output_image
|
| 164 |
elif task_prompt == 'Region to Segmentation':
|
| 165 |
task_prompt = '<REGION_TO_SEGMENTATION>'
|
| 166 |
-
results = run_example(task_prompt, image, text_input
|
| 167 |
output_image = copy.deepcopy(image)
|
| 168 |
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 169 |
return results, output_image
|
| 170 |
elif task_prompt == 'Open Vocabulary Detection':
|
| 171 |
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 172 |
-
results = run_example(task_prompt, image, text_input
|
| 173 |
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 174 |
fig = plot_bbox(image, bbox_results)
|
| 175 |
return results, fig_to_pil(fig)
|
| 176 |
elif task_prompt == 'Region to Category':
|
| 177 |
task_prompt = '<REGION_TO_CATEGORY>'
|
| 178 |
-
results = run_example(task_prompt, image, text_input
|
| 179 |
return results, None
|
| 180 |
elif task_prompt == 'Region to Description':
|
| 181 |
task_prompt = '<REGION_TO_DESCRIPTION>'
|
| 182 |
-
results = run_example(task_prompt, image, text_input
|
| 183 |
return results, None
|
| 184 |
elif task_prompt == 'OCR':
|
| 185 |
task_prompt = '<OCR>'
|
| 186 |
-
results = run_example(task_prompt, image
|
| 187 |
return results, None
|
| 188 |
elif task_prompt == 'OCR with Region':
|
| 189 |
task_prompt = '<OCR_WITH_REGION>'
|
| 190 |
-
results = run_example(task_prompt, image
|
| 191 |
output_image = copy.deepcopy(image)
|
| 192 |
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
| 193 |
return results, output_image
|
|
@@ -208,14 +202,14 @@ with gr.Blocks(css=css) as demo:
|
|
| 208 |
with gr.Row():
|
| 209 |
with gr.Column():
|
| 210 |
input_img = gr.Image(label="Input Picture")
|
| 211 |
-
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large')
|
| 212 |
task_prompt = gr.Dropdown(choices=[
|
|
|
|
| 213 |
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
| 214 |
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
| 215 |
'Referring Expression Segmentation', 'Region to Segmentation',
|
| 216 |
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
| 217 |
'OCR', 'OCR with Region'
|
| 218 |
-
], label="Task Prompt", value= '
|
| 219 |
text_input = gr.Textbox(label="Text Input (optional)")
|
| 220 |
submit_btn = gr.Button(value="Submit")
|
| 221 |
with gr.Column():
|
|
@@ -234,6 +228,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 234 |
label='Try examples'
|
| 235 |
)
|
| 236 |
|
| 237 |
-
submit_btn.click(process_image, [input_img, task_prompt, text_input
|
| 238 |
|
| 239 |
demo.launch(debug=True)
|
|
|
|
| 16 |
import subprocess
|
| 17 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 18 |
|
| 19 |
+
model = AutoModelForCausalLM.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True).to("cuda").eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
processor = AutoProcessor.from_pretrained('HuggingFaceM4/Florence-2-DocVQA', trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
+
DESCRIPTION = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/Florence-2-DocVQA)"
|
| 25 |
|
| 26 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
| 27 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
|
|
|
| 33 |
return Image.open(buf)
|
| 34 |
|
| 35 |
@spaces.GPU
|
| 36 |
+
def run_example(task_prompt, image, text_input=None):
|
| 37 |
+
model = model
|
| 38 |
+
processor = processor
|
| 39 |
if text_input is None:
|
| 40 |
prompt = task_prompt
|
| 41 |
else:
|
|
|
|
| 113 |
|
| 114 |
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'):
|
| 115 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 116 |
+
if task_prompt == 'Document Visual Question Answering':
|
| 117 |
+
task_prompt = '<DocVQA>'
|
| 118 |
+
results = run_example(task_prompt, image)
|
| 119 |
+
return results, None
|
| 120 |
+
elif task_prompt == 'Caption':
|
| 121 |
task_prompt = '<CAPTION>'
|
| 122 |
+
results = run_example(task_prompt, image)
|
| 123 |
return results, None
|
| 124 |
elif task_prompt == 'Detailed Caption':
|
| 125 |
task_prompt = '<DETAILED_CAPTION>'
|
| 126 |
+
results = run_example(task_prompt, image)
|
| 127 |
return results, None
|
| 128 |
elif task_prompt == 'More Detailed Caption':
|
| 129 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
| 130 |
+
results = run_example(task_prompt, image)
|
| 131 |
return results, None
|
| 132 |
elif task_prompt == 'Object Detection':
|
| 133 |
task_prompt = '<OD>'
|
| 134 |
+
results = run_example(task_prompt, image)
|
| 135 |
fig = plot_bbox(image, results['<OD>'])
|
| 136 |
return results, fig_to_pil(fig)
|
| 137 |
elif task_prompt == 'Dense Region Caption':
|
| 138 |
task_prompt = '<DENSE_REGION_CAPTION>'
|
| 139 |
+
results = run_example(task_prompt, image)
|
| 140 |
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 141 |
return results, fig_to_pil(fig)
|
| 142 |
elif task_prompt == 'Region Proposal':
|
| 143 |
task_prompt = '<REGION_PROPOSAL>'
|
| 144 |
+
results = run_example(task_prompt, image)
|
| 145 |
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 146 |
return results, fig_to_pil(fig)
|
| 147 |
elif task_prompt == 'Caption to Phrase Grounding':
|
| 148 |
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
| 149 |
+
results = run_example(task_prompt, image, text_input)
|
| 150 |
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 151 |
return results, fig_to_pil(fig)
|
| 152 |
elif task_prompt == 'Referring Expression Segmentation':
|
| 153 |
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
| 154 |
+
results = run_example(task_prompt, image, text_input)
|
| 155 |
output_image = copy.deepcopy(image)
|
| 156 |
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 157 |
return results, output_image
|
| 158 |
elif task_prompt == 'Region to Segmentation':
|
| 159 |
task_prompt = '<REGION_TO_SEGMENTATION>'
|
| 160 |
+
results = run_example(task_prompt, image, text_input)
|
| 161 |
output_image = copy.deepcopy(image)
|
| 162 |
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 163 |
return results, output_image
|
| 164 |
elif task_prompt == 'Open Vocabulary Detection':
|
| 165 |
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 166 |
+
results = run_example(task_prompt, image, text_input)
|
| 167 |
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 168 |
fig = plot_bbox(image, bbox_results)
|
| 169 |
return results, fig_to_pil(fig)
|
| 170 |
elif task_prompt == 'Region to Category':
|
| 171 |
task_prompt = '<REGION_TO_CATEGORY>'
|
| 172 |
+
results = run_example(task_prompt, image, text_input)
|
| 173 |
return results, None
|
| 174 |
elif task_prompt == 'Region to Description':
|
| 175 |
task_prompt = '<REGION_TO_DESCRIPTION>'
|
| 176 |
+
results = run_example(task_prompt, image, text_input)
|
| 177 |
return results, None
|
| 178 |
elif task_prompt == 'OCR':
|
| 179 |
task_prompt = '<OCR>'
|
| 180 |
+
results = run_example(task_prompt, image)
|
| 181 |
return results, None
|
| 182 |
elif task_prompt == 'OCR with Region':
|
| 183 |
task_prompt = '<OCR_WITH_REGION>'
|
| 184 |
+
results = run_example(task_prompt, image)
|
| 185 |
output_image = copy.deepcopy(image)
|
| 186 |
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
| 187 |
return results, output_image
|
|
|
|
| 202 |
with gr.Row():
|
| 203 |
with gr.Column():
|
| 204 |
input_img = gr.Image(label="Input Picture")
|
|
|
|
| 205 |
task_prompt = gr.Dropdown(choices=[
|
| 206 |
+
'Document Visual Question Answering',
|
| 207 |
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
| 208 |
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
| 209 |
'Referring Expression Segmentation', 'Region to Segmentation',
|
| 210 |
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
| 211 |
'OCR', 'OCR with Region'
|
| 212 |
+
], label="Task Prompt", value= 'Document Visual Question Answering')
|
| 213 |
text_input = gr.Textbox(label="Text Input (optional)")
|
| 214 |
submit_btn = gr.Button(value="Submit")
|
| 215 |
with gr.Column():
|
|
|
|
| 228 |
label='Try examples'
|
| 229 |
)
|
| 230 |
|
| 231 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
| 232 |
|
| 233 |
demo.launch(debug=True)
|