remove unused parts
Browse files
app.py
CHANGED
|
@@ -26,12 +26,6 @@ DESCRIPTION = "# [Florence-2-DocVQA Demo](https://huggingface.co/HuggingFaceM4/F
|
|
| 26 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
| 27 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
| 28 |
|
| 29 |
-
def fig_to_pil(fig):
|
| 30 |
-
buf = io.BytesIO()
|
| 31 |
-
fig.savefig(buf, format='png')
|
| 32 |
-
buf.seek(0)
|
| 33 |
-
return Image.open(buf)
|
| 34 |
-
|
| 35 |
@spaces.GPU
|
| 36 |
def run_example(task_prompt, image, text_input=None):
|
| 37 |
if text_input is None:
|
|
@@ -53,138 +47,14 @@ def run_example(task_prompt, image, text_input=None):
|
|
| 53 |
task=task_prompt,
|
| 54 |
image_size=(image.width, image.height)
|
| 55 |
)
|
| 56 |
-
return parsed_answer
|
| 57 |
-
|
| 58 |
-
def
|
| 59 |
-
fig, ax = plt.subplots()
|
| 60 |
-
ax.imshow(image)
|
| 61 |
-
for bbox, label in zip(data['bboxes'], data['labels']):
|
| 62 |
-
x1, y1, x2, y2 = bbox
|
| 63 |
-
rect = patches.Rectangle((x1, y1), x2-x1, y2-y1, linewidth=1, edgecolor='r', facecolor='none')
|
| 64 |
-
ax.add_patch(rect)
|
| 65 |
-
plt.text(x1, y1, label, color='white', fontsize=8, bbox=dict(facecolor='red', alpha=0.5))
|
| 66 |
-
ax.axis('off')
|
| 67 |
-
return fig
|
| 68 |
-
|
| 69 |
-
def draw_polygons(image, prediction, fill_mask=False):
|
| 70 |
-
|
| 71 |
-
draw = ImageDraw.Draw(image)
|
| 72 |
-
scale = 1
|
| 73 |
-
for polygons, label in zip(prediction['polygons'], prediction['labels']):
|
| 74 |
-
color = random.choice(colormap)
|
| 75 |
-
fill_color = random.choice(colormap) if fill_mask else None
|
| 76 |
-
for _polygon in polygons:
|
| 77 |
-
_polygon = np.array(_polygon).reshape(-1, 2)
|
| 78 |
-
if len(_polygon) < 3:
|
| 79 |
-
print('Invalid polygon:', _polygon)
|
| 80 |
-
continue
|
| 81 |
-
_polygon = (_polygon * scale).reshape(-1).tolist()
|
| 82 |
-
if fill_mask:
|
| 83 |
-
draw.polygon(_polygon, outline=color, fill=fill_color)
|
| 84 |
-
else:
|
| 85 |
-
draw.polygon(_polygon, outline=color)
|
| 86 |
-
draw.text((_polygon[0] + 8, _polygon[1] + 2), label, fill=color)
|
| 87 |
-
return image
|
| 88 |
-
|
| 89 |
-
def convert_to_od_format(data):
|
| 90 |
-
bboxes = data.get('bboxes', [])
|
| 91 |
-
labels = data.get('bboxes_labels', [])
|
| 92 |
-
od_results = {
|
| 93 |
-
'bboxes': bboxes,
|
| 94 |
-
'labels': labels
|
| 95 |
-
}
|
| 96 |
-
return od_results
|
| 97 |
-
|
| 98 |
-
def draw_ocr_bboxes(image, prediction):
|
| 99 |
-
scale = 1
|
| 100 |
-
draw = ImageDraw.Draw(image)
|
| 101 |
-
bboxes, labels = prediction['quad_boxes'], prediction['labels']
|
| 102 |
-
for box, label in zip(bboxes, labels):
|
| 103 |
-
color = random.choice(colormap)
|
| 104 |
-
new_box = (np.array(box) * scale).tolist()
|
| 105 |
-
draw.polygon(new_box, width=3, outline=color)
|
| 106 |
-
draw.text((new_box[0]+8, new_box[1]+2),
|
| 107 |
-
"{}".format(label),
|
| 108 |
-
align="right",
|
| 109 |
-
fill=color)
|
| 110 |
-
return image
|
| 111 |
-
|
| 112 |
-
def process_image(image, task_prompt, text_input=None):
|
| 113 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
elif task_prompt == 'Caption':
|
| 119 |
-
task_prompt = '<CAPTION>'
|
| 120 |
-
results = run_example(task_prompt, image)
|
| 121 |
-
return results, None
|
| 122 |
-
elif task_prompt == 'Detailed Caption':
|
| 123 |
-
task_prompt = '<DETAILED_CAPTION>'
|
| 124 |
-
results = run_example(task_prompt, image)
|
| 125 |
-
return results, None
|
| 126 |
-
elif task_prompt == 'More Detailed Caption':
|
| 127 |
-
task_prompt = '<MORE_DETAILED_CAPTION>'
|
| 128 |
-
results = run_example(task_prompt, image)
|
| 129 |
-
return results, None
|
| 130 |
-
elif task_prompt == 'Object Detection':
|
| 131 |
-
task_prompt = '<OD>'
|
| 132 |
-
results = run_example(task_prompt, image)
|
| 133 |
-
fig = plot_bbox(image, results['<OD>'])
|
| 134 |
-
return results, fig_to_pil(fig)
|
| 135 |
-
elif task_prompt == 'Dense Region Caption':
|
| 136 |
-
task_prompt = '<DENSE_REGION_CAPTION>'
|
| 137 |
-
results = run_example(task_prompt, image)
|
| 138 |
-
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 139 |
-
return results, fig_to_pil(fig)
|
| 140 |
-
elif task_prompt == 'Region Proposal':
|
| 141 |
-
task_prompt = '<REGION_PROPOSAL>'
|
| 142 |
-
results = run_example(task_prompt, image)
|
| 143 |
-
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 144 |
-
return results, fig_to_pil(fig)
|
| 145 |
-
elif task_prompt == 'Caption to Phrase Grounding':
|
| 146 |
-
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
| 147 |
-
results = run_example(task_prompt, image, text_input)
|
| 148 |
-
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 149 |
-
return results, fig_to_pil(fig)
|
| 150 |
-
elif task_prompt == 'Referring Expression Segmentation':
|
| 151 |
-
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
| 152 |
-
results = run_example(task_prompt, image, text_input)
|
| 153 |
-
output_image = copy.deepcopy(image)
|
| 154 |
-
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 155 |
-
return results, output_image
|
| 156 |
-
elif task_prompt == 'Region to Segmentation':
|
| 157 |
-
task_prompt = '<REGION_TO_SEGMENTATION>'
|
| 158 |
-
results = run_example(task_prompt, image, text_input)
|
| 159 |
-
output_image = copy.deepcopy(image)
|
| 160 |
-
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 161 |
-
return results, output_image
|
| 162 |
-
elif task_prompt == 'Open Vocabulary Detection':
|
| 163 |
-
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 164 |
-
results = run_example(task_prompt, image, text_input)
|
| 165 |
-
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 166 |
-
fig = plot_bbox(image, bbox_results)
|
| 167 |
-
return results, fig_to_pil(fig)
|
| 168 |
-
elif task_prompt == 'Region to Category':
|
| 169 |
-
task_prompt = '<REGION_TO_CATEGORY>'
|
| 170 |
-
results = run_example(task_prompt, image, text_input)
|
| 171 |
-
return results, None
|
| 172 |
-
elif task_prompt == 'Region to Description':
|
| 173 |
-
task_prompt = '<REGION_TO_DESCRIPTION>'
|
| 174 |
-
results = run_example(task_prompt, image, text_input)
|
| 175 |
-
return results, None
|
| 176 |
-
elif task_prompt == 'OCR':
|
| 177 |
-
task_prompt = '<OCR>'
|
| 178 |
-
results = run_example(task_prompt, image)
|
| 179 |
-
return results, None
|
| 180 |
-
elif task_prompt == 'OCR with Region':
|
| 181 |
-
task_prompt = '<OCR_WITH_REGION>'
|
| 182 |
-
results = run_example(task_prompt, image)
|
| 183 |
-
output_image = copy.deepcopy(image)
|
| 184 |
-
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
| 185 |
-
return results, output_image
|
| 186 |
-
else:
|
| 187 |
-
return "", None # Return empty string and None for unknown task prompts
|
| 188 |
|
| 189 |
css = """
|
| 190 |
#output {
|
|
@@ -200,14 +70,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 200 |
with gr.Row():
|
| 201 |
with gr.Column():
|
| 202 |
input_img = gr.Image(label="Input Picture")
|
| 203 |
-
task_prompt = gr.Dropdown(choices=[
|
| 204 |
-
'Document Visual Question Answering',
|
| 205 |
-
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
| 206 |
-
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
| 207 |
-
'Referring Expression Segmentation', 'Region to Segmentation',
|
| 208 |
-
'Open Vocabulary Detection', 'Region to Category', 'Region to Description',
|
| 209 |
-
'OCR', 'OCR with Region'
|
| 210 |
-
], label="Task Prompt", value= 'Document Visual Question Answering')
|
| 211 |
text_input = gr.Textbox(label="Text Input (optional)")
|
| 212 |
submit_btn = gr.Button(value="Submit")
|
| 213 |
with gr.Column():
|
|
@@ -219,13 +81,13 @@ with gr.Blocks(css=css) as demo:
|
|
| 219 |
["image1.jpg", 'Object Detection'],
|
| 220 |
["image2.jpg", 'OCR with Region']
|
| 221 |
],
|
| 222 |
-
inputs=[input_img
|
| 223 |
outputs=[output_text, output_img],
|
| 224 |
fn=process_image,
|
| 225 |
cache_examples=True,
|
| 226 |
label='Try examples'
|
| 227 |
)
|
| 228 |
|
| 229 |
-
submit_btn.click(process_image, [input_img,
|
| 230 |
|
| 231 |
demo.launch(debug=True)
|
|
|
|
| 26 |
colormap = ['blue','orange','green','purple','brown','pink','gray','olive','cyan','red',
|
| 27 |
'lime','indigo','violet','aqua','magenta','coral','gold','tan','skyblue']
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
@spaces.GPU
|
| 30 |
def run_example(task_prompt, image, text_input=None):
|
| 31 |
if text_input is None:
|
|
|
|
| 47 |
task=task_prompt,
|
| 48 |
image_size=(image.width, image.height)
|
| 49 |
)
|
| 50 |
+
return parsed_answer
|
| 51 |
+
|
| 52 |
+
def process_image(image, text_input=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 54 |
+
task_prompt = '<DocVQA>'
|
| 55 |
+
results = run_example(task_prompt, image, text_input)[task_prompt].replace("<pad>", "")
|
| 56 |
+
return results, None
|
| 57 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
css = """
|
| 60 |
#output {
|
|
|
|
| 70 |
with gr.Row():
|
| 71 |
with gr.Column():
|
| 72 |
input_img = gr.Image(label="Input Picture")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
text_input = gr.Textbox(label="Text Input (optional)")
|
| 74 |
submit_btn = gr.Button(value="Submit")
|
| 75 |
with gr.Column():
|
|
|
|
| 81 |
["image1.jpg", 'Object Detection'],
|
| 82 |
["image2.jpg", 'OCR with Region']
|
| 83 |
],
|
| 84 |
+
inputs=[input_img],
|
| 85 |
outputs=[output_text, output_img],
|
| 86 |
fn=process_image,
|
| 87 |
cache_examples=True,
|
| 88 |
label='Try examples'
|
| 89 |
)
|
| 90 |
|
| 91 |
+
submit_btn.click(process_image, [input_img, text_input], [output_text, output_img])
|
| 92 |
|
| 93 |
demo.launch(debug=True)
|