Update app.py
Browse files
app.py
CHANGED
|
@@ -16,9 +16,19 @@ import numpy as np
|
|
| 16 |
import subprocess
|
| 17 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
|
| 24 |
DESCRIPTION = "# [Florence-2 Demo](https://huggingface.co/microsoft/Florence-2-large)"
|
|
@@ -32,8 +42,10 @@ def fig_to_pil(fig):
|
|
| 32 |
buf.seek(0)
|
| 33 |
return Image.open(buf)
|
| 34 |
|
| 35 |
-
|
| 36 |
-
def run_example(task_prompt, image, text_input=None):
|
|
|
|
|
|
|
| 37 |
if text_input is None:
|
| 38 |
prompt = task_prompt
|
| 39 |
else:
|
|
@@ -109,73 +121,73 @@ def draw_ocr_bboxes(image, prediction):
|
|
| 109 |
fill=color)
|
| 110 |
return image
|
| 111 |
|
| 112 |
-
def process_image(image, task_prompt, text_input=None):
|
| 113 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 114 |
if task_prompt == 'Caption':
|
| 115 |
task_prompt = '<CAPTION>'
|
| 116 |
-
|
| 117 |
-
return
|
| 118 |
elif task_prompt == 'Detailed Caption':
|
| 119 |
task_prompt = '<DETAILED_CAPTION>'
|
| 120 |
-
|
| 121 |
-
return
|
| 122 |
elif task_prompt == 'More Detailed Caption':
|
| 123 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
| 124 |
-
|
| 125 |
-
return
|
| 126 |
elif task_prompt == 'Object Detection':
|
| 127 |
task_prompt = '<OD>'
|
| 128 |
-
results = run_example(task_prompt, image)
|
| 129 |
fig = plot_bbox(image, results['<OD>'])
|
| 130 |
return results, fig_to_pil(fig)
|
| 131 |
elif task_prompt == 'Dense Region Caption':
|
| 132 |
task_prompt = '<DENSE_REGION_CAPTION>'
|
| 133 |
-
results = run_example(task_prompt, image)
|
| 134 |
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 135 |
return results, fig_to_pil(fig)
|
| 136 |
elif task_prompt == 'Region Proposal':
|
| 137 |
task_prompt = '<REGION_PROPOSAL>'
|
| 138 |
-
results = run_example(task_prompt, image)
|
| 139 |
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 140 |
return results, fig_to_pil(fig)
|
| 141 |
elif task_prompt == 'Caption to Phrase Grounding':
|
| 142 |
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
| 143 |
-
results = run_example(task_prompt, image, text_input)
|
| 144 |
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 145 |
return results, fig_to_pil(fig)
|
| 146 |
elif task_prompt == 'Referring Expression Segmentation':
|
| 147 |
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
| 148 |
-
results = run_example(task_prompt, image, text_input)
|
| 149 |
output_image = copy.deepcopy(image)
|
| 150 |
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 151 |
return results, output_image
|
| 152 |
elif task_prompt == 'Region to Segmentation':
|
| 153 |
task_prompt = '<REGION_TO_SEGMENTATION>'
|
| 154 |
-
results = run_example(task_prompt, image, text_input)
|
| 155 |
output_image = copy.deepcopy(image)
|
| 156 |
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 157 |
return results, output_image
|
| 158 |
elif task_prompt == 'Open Vocabulary Detection':
|
| 159 |
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 160 |
-
results = run_example(task_prompt, image, text_input)
|
| 161 |
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 162 |
fig = plot_bbox(image, bbox_results)
|
| 163 |
return results, fig_to_pil(fig)
|
| 164 |
elif task_prompt == 'Region to Category':
|
| 165 |
task_prompt = '<REGION_TO_CATEGORY>'
|
| 166 |
-
results = run_example(task_prompt, image, text_input)
|
| 167 |
return results, None
|
| 168 |
elif task_prompt == 'Region to Description':
|
| 169 |
task_prompt = '<REGION_TO_DESCRIPTION>'
|
| 170 |
-
results = run_example(task_prompt, image, text_input)
|
| 171 |
return results, None
|
| 172 |
elif task_prompt == 'OCR':
|
| 173 |
task_prompt = '<OCR>'
|
| 174 |
-
|
| 175 |
-
return
|
| 176 |
elif task_prompt == 'OCR with Region':
|
| 177 |
task_prompt = '<OCR_WITH_REGION>'
|
| 178 |
-
results = run_example(task_prompt, image)
|
| 179 |
output_image = copy.deepcopy(image)
|
| 180 |
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
| 181 |
return results, output_image
|
|
@@ -196,6 +208,7 @@ with gr.Blocks(css=css) as demo:
|
|
| 196 |
with gr.Row():
|
| 197 |
with gr.Column():
|
| 198 |
input_img = gr.Image(label="Input Picture")
|
|
|
|
| 199 |
task_prompt = gr.Dropdown(choices=[
|
| 200 |
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
| 201 |
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
|
@@ -221,6 +234,6 @@ with gr.Blocks(css=css) as demo:
|
|
| 221 |
label='Try examples'
|
| 222 |
)
|
| 223 |
|
| 224 |
-
submit_btn.click(process_image, [input_img, task_prompt, text_input], [output_text, output_img])
|
| 225 |
|
| 226 |
demo.launch(debug=True)
|
|
|
|
| 16 |
import subprocess
|
| 17 |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
| 18 |
|
| 19 |
+
models = {
|
| 20 |
+
'microsoft/Florence-2-large-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True).to("cuda").eval(),
|
| 21 |
+
'microsoft/Florence-2-large': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True).to("cuda").eval(),
|
| 22 |
+
'microsoft/Florence-2-base-ft': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True).to("cuda").eval(),
|
| 23 |
+
'microsoft/Florence-2-base': AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to("cuda").eval(),
|
| 24 |
+
}
|
| 25 |
+
|
| 26 |
+
processors = {
|
| 27 |
+
'microsoft/Florence-2-large-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-large-ft', trust_remote_code=True),
|
| 28 |
+
'microsoft/Florence-2-large': AutoProcessor.from_pretrained('microsoft/Florence-2-large', trust_remote_code=True),
|
| 29 |
+
'microsoft/Florence-2-base-ft': AutoProcessor.from_pretrained('microsoft/Florence-2-base-ft', trust_remote_code=True),
|
| 30 |
+
'microsoft/Florence-2-base': AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True),
|
| 31 |
+
}
|
| 32 |
|
| 33 |
|
| 34 |
DESCRIPTION = "# [Florence-2 Demo](https://huggingface.co/microsoft/Florence-2-large)"
|
|
|
|
| 42 |
buf.seek(0)
|
| 43 |
return Image.open(buf)
|
| 44 |
|
| 45 |
+
|
| 46 |
+
def run_example(task_prompt, image, text_input=None, model_id='microsoft/Florence-2-large'):
|
| 47 |
+
model = models[model_id]
|
| 48 |
+
processor = processors[model_id]
|
| 49 |
if text_input is None:
|
| 50 |
prompt = task_prompt
|
| 51 |
else:
|
|
|
|
| 121 |
fill=color)
|
| 122 |
return image
|
| 123 |
|
| 124 |
+
def process_image(image, task_prompt, text_input=None, model_id='microsoft/Florence-2-large'):
|
| 125 |
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 126 |
if task_prompt == 'Caption':
|
| 127 |
task_prompt = '<CAPTION>'
|
| 128 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
| 129 |
+
return results, None
|
| 130 |
elif task_prompt == 'Detailed Caption':
|
| 131 |
task_prompt = '<DETAILED_CAPTION>'
|
| 132 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
| 133 |
+
return results, None
|
| 134 |
elif task_prompt == 'More Detailed Caption':
|
| 135 |
task_prompt = '<MORE_DETAILED_CAPTION>'
|
| 136 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
| 137 |
+
return results, None
|
| 138 |
elif task_prompt == 'Object Detection':
|
| 139 |
task_prompt = '<OD>'
|
| 140 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
| 141 |
fig = plot_bbox(image, results['<OD>'])
|
| 142 |
return results, fig_to_pil(fig)
|
| 143 |
elif task_prompt == 'Dense Region Caption':
|
| 144 |
task_prompt = '<DENSE_REGION_CAPTION>'
|
| 145 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
| 146 |
fig = plot_bbox(image, results['<DENSE_REGION_CAPTION>'])
|
| 147 |
return results, fig_to_pil(fig)
|
| 148 |
elif task_prompt == 'Region Proposal':
|
| 149 |
task_prompt = '<REGION_PROPOSAL>'
|
| 150 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
| 151 |
fig = plot_bbox(image, results['<REGION_PROPOSAL>'])
|
| 152 |
return results, fig_to_pil(fig)
|
| 153 |
elif task_prompt == 'Caption to Phrase Grounding':
|
| 154 |
task_prompt = '<CAPTION_TO_PHRASE_GROUNDING>'
|
| 155 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
| 156 |
fig = plot_bbox(image, results['<CAPTION_TO_PHRASE_GROUNDING>'])
|
| 157 |
return results, fig_to_pil(fig)
|
| 158 |
elif task_prompt == 'Referring Expression Segmentation':
|
| 159 |
task_prompt = '<REFERRING_EXPRESSION_SEGMENTATION>'
|
| 160 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
| 161 |
output_image = copy.deepcopy(image)
|
| 162 |
output_image = draw_polygons(output_image, results['<REFERRING_EXPRESSION_SEGMENTATION>'], fill_mask=True)
|
| 163 |
return results, output_image
|
| 164 |
elif task_prompt == 'Region to Segmentation':
|
| 165 |
task_prompt = '<REGION_TO_SEGMENTATION>'
|
| 166 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
| 167 |
output_image = copy.deepcopy(image)
|
| 168 |
output_image = draw_polygons(output_image, results['<REGION_TO_SEGMENTATION>'], fill_mask=True)
|
| 169 |
return results, output_image
|
| 170 |
elif task_prompt == 'Open Vocabulary Detection':
|
| 171 |
task_prompt = '<OPEN_VOCABULARY_DETECTION>'
|
| 172 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
| 173 |
bbox_results = convert_to_od_format(results['<OPEN_VOCABULARY_DETECTION>'])
|
| 174 |
fig = plot_bbox(image, bbox_results)
|
| 175 |
return results, fig_to_pil(fig)
|
| 176 |
elif task_prompt == 'Region to Category':
|
| 177 |
task_prompt = '<REGION_TO_CATEGORY>'
|
| 178 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
| 179 |
return results, None
|
| 180 |
elif task_prompt == 'Region to Description':
|
| 181 |
task_prompt = '<REGION_TO_DESCRIPTION>'
|
| 182 |
+
results = run_example(task_prompt, image, text_input, model_id)
|
| 183 |
return results, None
|
| 184 |
elif task_prompt == 'OCR':
|
| 185 |
task_prompt = '<OCR>'
|
| 186 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
| 187 |
+
return results, None
|
| 188 |
elif task_prompt == 'OCR with Region':
|
| 189 |
task_prompt = '<OCR_WITH_REGION>'
|
| 190 |
+
results = run_example(task_prompt, image, model_id=model_id)
|
| 191 |
output_image = copy.deepcopy(image)
|
| 192 |
output_image = draw_ocr_bboxes(output_image, results['<OCR_WITH_REGION>'])
|
| 193 |
return results, output_image
|
|
|
|
| 208 |
with gr.Row():
|
| 209 |
with gr.Column():
|
| 210 |
input_img = gr.Image(label="Input Picture")
|
| 211 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value='microsoft/Florence-2-large')
|
| 212 |
task_prompt = gr.Dropdown(choices=[
|
| 213 |
'Caption', 'Detailed Caption', 'More Detailed Caption', 'Object Detection',
|
| 214 |
'Dense Region Caption', 'Region Proposal', 'Caption to Phrase Grounding',
|
|
|
|
| 234 |
label='Try examples'
|
| 235 |
)
|
| 236 |
|
| 237 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text, output_img])
|
| 238 |
|
| 239 |
demo.launch(debug=True)
|