File size: 1,921 Bytes
86e31ba
 
 
06aa4a6
86e31ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import torch
from torch.utils.data import DataLoader
from transformers import AdamW, get_linear_schedule_with_warmup
# from utils.dataset import BDTtsDataset
from inference import tts  # reuse your model

training_config = {
    "learning_rate": 1e-4,
    "batch_size": 16,
    "warmup_steps": 1000,
    "gradient_accumulation_steps": 4,
    "mixed_precision": True,
    "save_strategy": "steps",
    "save_steps": 500,
    "eval_steps": 100,
    "num_epochs": 5
}

def train():
    dataset = BDTtsDataset("./data/train")
    dataloader = DataLoader(dataset, batch_size=training_config["batch_size"], shuffle=True)

    optimizer = AdamW(tts.model.parameters(), lr=training_config["learning_rate"])
    scheduler = get_linear_schedule_with_warmup(
        optimizer,
        num_warmup_steps=training_config["warmup_steps"],
        num_training_steps=len(dataloader) * training_config["num_epochs"]
    )

    scaler = torch.cuda.amp.GradScaler() if training_config["mixed_precision"] else None
    step = 0

    for epoch in range(training_config["num_epochs"]):
        for batch in dataloader:
            inputs, targets = batch
            optimizer.zero_grad()

            with torch.cuda.amp.autocast(enabled=scaler is not None):
                outputs = tts.model(inputs)
                loss = outputs.loss if hasattr(outputs, "loss") else torch.nn.functional.mse_loss(outputs, targets)

            if scaler:
                scaler.scale(loss).backward()
                scaler.step(optimizer)
                scaler.update()
            else:
                loss.backward()
                optimizer.step()

            scheduler.step()
            step += 1

            if step % training_config["save_steps"] == 0:
                torch.save(tts.model.state_dict(), f"checkpoints/model_step{step}.pth")
                print(f"Saved checkpoint at step {step}")

if __name__ == "__main__":
    train()