| from TTS.api import TTS | |
| import torch | |
| import json | |
| # Path to your local config and checkpoint | |
| config_path = "./config.json" | |
| checkpoint_path = "./pytorch_model.pth" | |
| # Load model from checkpoint | |
| gpu = torch.cuda.is_available() | |
| tts = TTS(config_path=config_path, model_path=checkpoint_path, progress_bar=False, gpu=gpu) | |
| # model_id = "bangla-speech-processing/bangla_tts_female" # local model path or Hugging Face ID | |
| # tts = TTS(model_name=model_id, progress_bar=False, gpu=False) | |
| # Detect if GPU is available and initialize TTS | |
| # gpu = torch.cuda.is_available() | |
| # tts = TTS(model_id, progress_bar=False, gpu=gpu) | |
| def run_tts(text, output_path="output.wav"): | |
| """Convert text to speech and save as file""" | |
| tts.tts_to_file(text=text, file_path=output_path) | |
| return output_path | |
| # def text_to_speech(text): | |
| # output_path = "output.wav" | |
| # tts.tts_to_file(text=text, file_path=output_path) | |
| # return output_path | |
| # Gradio app | |
| # demo = gr.Interface( | |
| # fn=text_to_speech, | |
| # inputs="text", | |
| # outputs="audio", | |
| # title="Bangla Text to Speech", | |
| # description="Enter Bangla text and get speech output" | |
| # ) | |
| # if __name__ == "__main__": | |
| # demo.launch() | |
| # tts --model_path bangla_tts_female/pytorch_model.pth \ | |
| # --config_path bangla_tts_female/config.json \ | |
| # --text "আমি বাংলাদেশ থেকে এসেছি।" \ | |
| # --out_path baseline.wav | |
| # from IPython.display import Audio | |
| # Audio("baseline.wav") | |