File size: 18,045 Bytes
a856109
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import torch

from typing import List, Union, Dict, Any, Callable, Optional, Tuple
from diffusers import StableDiffusionControlNetInpaintPipeline, ControlNetModel
from diffusers.utils.torch_utils import randn_tensor, is_compiled_module
from diffusers.models import ControlNetModel
from diffusers.pipelines.controlnet import MultiControlNetModel
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.stable_diffusion.pipeline_output import (
    StableDiffusionPipelineOutput,
)


class ControlNetOutpaintPipeline(StableDiffusionControlNetInpaintPipeline):
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        image: PipelineImageInput = None,
        mask_image: PipelineImageInput = None,
        control_image: PipelineImageInput = None,
        height: Optional[int] = None,
        width: Optional[int] = None,
        strength: float = 1.0,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        negative_prompt: Optional[Union[str, List[str]]] = None,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        latents: Optional[torch.FloatTensor] = None,
        prompt_embeds: Optional[torch.FloatTensor] = None,
        negative_prompt_embeds: Optional[torch.FloatTensor] = None,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
        callback_steps: int = 1,
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
        controlnet_conditioning_scale: Union[float, List[float]] = 0.5,
        guess_mode: bool = False,
        control_guidance_start: Union[float, List[float]] = 0.0,
        control_guidance_end: Union[float, List[float]] = 1.0,
        clip_skip: Optional[int] = None,
        ## add
        repeat_time: int = 4,
        ##
        **kwargs: Any,
    ):
        r""" """
        controlnet = (
            self.controlnet._orig_mod
            if is_compiled_module(self.controlnet)
            else self.controlnet
        )

        # self.init_filter()

        # align format for control guidance
        if not isinstance(control_guidance_start, list) and isinstance(
            control_guidance_end, list
        ):
            control_guidance_start = len(control_guidance_end) * [
                control_guidance_start
            ]
        elif not isinstance(control_guidance_end, list) and isinstance(
            control_guidance_start, list
        ):
            control_guidance_end = len(control_guidance_start) * [control_guidance_end]
        elif not isinstance(control_guidance_start, list) and not isinstance(
            control_guidance_end, list
        ):
            mult = (
                len(controlnet.nets)
                if isinstance(controlnet, MultiControlNetModel)
                else 1
            )
            control_guidance_start, control_guidance_end = mult * [
                control_guidance_start
            ], mult * [control_guidance_end]

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            control_image,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            controlnet_conditioning_scale,
            control_guidance_start,
            control_guidance_end,
        )

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

        if isinstance(controlnet, MultiControlNetModel) and isinstance(
            controlnet_conditioning_scale, float
        ):
            controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(
                controlnet.nets
            )

        global_pool_conditions = (
            controlnet.config.global_pool_conditions
            if isinstance(controlnet, ControlNetModel)
            else controlnet.nets[0].config.global_pool_conditions
        )
        guess_mode = guess_mode or global_pool_conditions

        # 3. Encode input prompt
        text_encoder_lora_scale = (
            cross_attention_kwargs.get("scale", None)
            if cross_attention_kwargs is not None
            else None
        )
        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=text_encoder_lora_scale,
            clip_skip=clip_skip,
        )
        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        # 4. Prepare image
        if isinstance(controlnet, ControlNetModel):
            control_image = self.prepare_control_image(
                image=control_image,
                width=width,
                height=height,
                batch_size=batch_size * num_images_per_prompt,
                num_images_per_prompt=num_images_per_prompt,
                device=device,
                dtype=controlnet.dtype,
                do_classifier_free_guidance=do_classifier_free_guidance,
                guess_mode=guess_mode,
            )
        elif isinstance(controlnet, MultiControlNetModel):
            control_images = []

            for control_image_ in control_image:
                control_image_ = self.prepare_control_image(
                    image=control_image_,
                    width=width,
                    height=height,
                    batch_size=batch_size * num_images_per_prompt,
                    num_images_per_prompt=num_images_per_prompt,
                    device=device,
                    dtype=controlnet.dtype,
                    do_classifier_free_guidance=do_classifier_free_guidance,
                    guess_mode=guess_mode,
                )

                control_images.append(control_image_)

            control_image = control_images
        else:
            assert False

        # 4. Preprocess mask and image - resizes image and mask w.r.t height and width
        init_image = self.image_processor.preprocess(image, height=height, width=width)
        init_image = init_image.to(dtype=torch.float32)

        mask = self.mask_processor.preprocess(mask_image, height=height, width=width)

        masked_image = init_image * (mask < 0.5)
        _, _, height, width = init_image.shape

        # 5. Prepare timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps, num_inference_steps = self.get_timesteps(
            num_inference_steps=num_inference_steps, strength=strength, device=device
        )
        # at which timestep to set the initial noise (n.b. 50% if strength is 0.5)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
        # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise
        is_strength_max = strength == 1.0

        # 6. Prepare latent variables
        num_channels_latents = self.vae.config.latent_channels
        num_channels_unet = self.unet.config.in_channels
        return_image_latents = True

        latents_outputs = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
            image=init_image,
            timestep=latent_timestep,
            is_strength_max=is_strength_max,
            return_noise=True,
            return_image_latents=return_image_latents,
        )

        if return_image_latents:
            latents, noise, image_latents = latents_outputs
        else:
            latents, noise = latents_outputs

        # 7. Prepare mask latent variables
        mask, masked_image_latents = self.prepare_mask_latents(
            mask,
            masked_image,
            batch_size * num_images_per_prompt,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            do_classifier_free_guidance,
        )

        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 7.1 Create tensor stating which controlnets to keep
        controlnet_keep = []
        for i in range(len(timesteps)):
            keeps = [
                1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
                for s, e in zip(control_guidance_start, control_guidance_end)
            ]
            controlnet_keep.append(
                keeps[0] if isinstance(controlnet, ControlNetModel) else keeps
            )

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            # for i, t in enumerate(timesteps):

            ## modify
            i = 0
            reinject = repeat_time
            while i < len(timesteps):
                # expand the latents if we are doing classifier free guidance
                t = timesteps[i]
                latent_model_input = (
                    torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                )
                latent_model_input = self.scheduler.scale_model_input(
                    latent_model_input, t
                )

                # controlnet(s) inference
                if guess_mode and do_classifier_free_guidance:
                    # Infer ControlNet only for the conditional batch.
                    control_model_input = latents
                    control_model_input = self.scheduler.scale_model_input(
                        control_model_input, t
                    )
                    controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
                else:
                    control_model_input = latent_model_input
                    controlnet_prompt_embeds = prompt_embeds

                if isinstance(controlnet_keep[i], list):
                    cond_scale = [
                        c * s
                        for c, s in zip(
                            controlnet_conditioning_scale, controlnet_keep[i]
                        )
                    ]
                else:
                    controlnet_cond_scale = controlnet_conditioning_scale
                    if isinstance(controlnet_cond_scale, list):
                        controlnet_cond_scale = controlnet_cond_scale[0]
                    cond_scale = controlnet_cond_scale * controlnet_keep[i]

                down_block_res_samples, mid_block_res_sample = self.controlnet(
                    control_model_input,
                    t,
                    encoder_hidden_states=controlnet_prompt_embeds,
                    controlnet_cond=control_image,
                    conditioning_scale=cond_scale,
                    guess_mode=guess_mode,
                    return_dict=False,
                )

                if guess_mode and do_classifier_free_guidance:
                    # Infered ControlNet only for the conditional batch.
                    # To apply the output of ControlNet to both the unconditional and conditional batches,
                    # add 0 to the unconditional batch to keep it unchanged.
                    down_block_res_samples = [
                        torch.cat([torch.zeros_like(d), d])
                        for d in down_block_res_samples
                    ]
                    mid_block_res_sample = torch.cat(
                        [
                            torch.zeros_like(mid_block_res_sample),
                            mid_block_res_sample,
                        ]
                    )

                # predict the noise residual
                if num_channels_unet == 9:
                    latent_model_input = torch.cat(
                        [latent_model_input, mask, masked_image_latents], dim=1
                    )

                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                    down_block_additional_residuals=down_block_res_samples,
                    mid_block_additional_residual=mid_block_res_sample,
                    return_dict=False,
                )[0]

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (
                        noise_pred_text - noise_pred_uncond
                    )

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(
                    noise_pred, t, latents, **extra_step_kwargs, return_dict=False
                )[0]

                if num_channels_unet == 4:
                    init_latents_proper = image_latents
                    if do_classifier_free_guidance:
                        init_mask, _ = mask.chunk(2)
                    else:
                        init_mask = mask

                    if i < len(timesteps) - 1:
                        noise_timestep = timesteps[i + 1]
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_proper,
                            noise,
                            torch.tensor([noise_timestep]),
                        )

                    latents = (
                        1 - init_mask
                    ) * init_latents_proper + init_mask * latents

                i += 1

                ## noise reinjection
                if i > 0 and i < int(len(timesteps) - 1) and reinject > 0:
                    current_timestep = timesteps[i]
                    target_timestep = timesteps[i - 1]
                    new_nosie = torch.randn_like(latents)

                    # step back x_t-1 -> x_t
                    latents = self.scheduler.step_back(
                        latents,
                        new_nosie,
                        torch.tensor([current_timestep]),
                        torch.tensor([target_timestep]),
                    )
                    i -= 1
                    reinject -= 1
                else:
                    # reinject = repeat_time

                    # schedule
                    if i >= int(len(timesteps) * 0.8):
                        reinject = 0
                    elif i >= int(len(timesteps) * 0.6):
                        reinject = max(0, repeat_time - 3)
                    elif i >= int(len(timesteps) * 0.4):
                        reinject = max(0, repeat_time - 2)
                    elif i >= int(len(timesteps) * 0.2):
                        reinject = max(0, repeat_time - 1)
                    else:
                        reinject = repeat_time

                    # call the callback, if provided
                    if i == len(timesteps) - 1 or (
                        (i + 1) > num_warmup_steps
                        and (i + 1) % self.scheduler.order == 0
                    ):
                        progress_bar.update()
                        if callback is not None and i % callback_steps == 0:
                            step_idx = i // getattr(self.scheduler, "order", 1)
                            callback(step_idx, t, latents)

        # If we do sequential model offloading, let's offload unet and controlnet
        # manually for max memory savings
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.unet.to("cpu")
            self.controlnet.to("cpu")
            torch.cuda.empty_cache()

        if not output_type == "latent":
            image = self.vae.decode(
                latents / self.vae.config.scaling_factor,
                return_dict=False,
                generator=generator,
            )[0]
            image, has_nsfw_concept = self.run_safety_checker(
                image, device, prompt_embeds.dtype
            )
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]

        image = self.image_processor.postprocess(
            image, output_type=output_type, do_denormalize=do_denormalize
        )

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(
            images=image, nsfw_content_detected=has_nsfw_concept
        )