Spaces:
Runtime error
Runtime error
File size: 9,617 Bytes
a856109 7ac6cf3 a856109 7ac6cf3 a856109 7ac6cf3 a856109 7ac6cf3 a856109 7ac6cf3 a856109 7ac6cf3 a856109 7ac6cf3 a856109 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
import os
import cv2
import numpy as np
import skimage
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from PIL import Image
from skimage.draw import disk
from skimage import morphology
from collections import OrderedDict
def load_mfdnet_checkpoint(model, weights):
checkpoint = torch.load(weights, map_location=lambda storage, loc: storage.cuda(0))
new_state_dict = OrderedDict()
for key, value in checkpoint["state_dict"].items():
if key.startswith("module"):
name = key[7:]
else:
name = key
new_state_dict[name] = value
model.load_state_dict(new_state_dict)
def adjust_gamma(image: torch.Tensor, gamma, device):
# image is in shape of [B,C,H,W] and gamma is in shape [B]
gamma = gamma.float().to(device)
gamma_tensor = torch.ones_like(image)
gamma_tensor = gamma.view(-1, 1, 1, 1) * gamma_tensor
image = torch.pow(image, gamma_tensor)
out = torch.clamp(image, 0.0, 1.0)
return out
def adjust_gamma_reverse(image: torch.Tensor, gamma, device):
# gamma=torch.Tensor([gamma]).cuda()
gamma = 1 / gamma.float().to(device)
gamma_tensor = torch.ones_like(image)
gamma_tensor = gamma.view(-1, 1, 1, 1) * gamma_tensor
image = torch.pow(image, gamma_tensor)
out = torch.clamp(image, 0.0, 1.0)
return out
def predict_flare_from_6_channel(input_tensor, gamma, device="cpu"):
# the input is a tensor in [B,C,H,W], the C here is 6
deflare_img = input_tensor[:, :3, :, :]
flare_img_predicted = input_tensor[:, 3:, :, :]
merge_img_predicted_linear = adjust_gamma(deflare_img, gamma, device) + adjust_gamma(
flare_img_predicted, gamma, device
)
merge_img_predicted = adjust_gamma_reverse(
torch.clamp(merge_img_predicted_linear, 1e-7, 1.0), gamma, device
)
return deflare_img, flare_img_predicted, merge_img_predicted
def predict_flare_from_3_channel(
input_tensor, flare_mask, base_img, flare_img, merge_img, gamma
):
# the input is a tensor in [B,C,H,W], the C here is 3
input_tensor_linear = adjust_gamma(input_tensor, gamma)
merge_tensor_linear = adjust_gamma(merge_img, gamma)
flare_img_predicted = adjust_gamma_reverse(
torch.clamp(merge_tensor_linear - input_tensor_linear, 1e-7, 1.0), gamma
)
masked_deflare_img = input_tensor * (1 - flare_mask) + base_img * flare_mask
masked_flare_img_predicted = (
flare_img_predicted * (1 - flare_mask) + flare_img * flare_mask
)
return masked_deflare_img, masked_flare_img_predicted
def get_highlight_mask(image, threshold=0.99, luminance_mode=False):
"""Get the area close to the exposure
Args:
image: the image tensor in [B,C,H,W]. For inference, B is set as 1.
threshold: the threshold of luminance/greyscale of exposure region
luminance_mode: use luminance or greyscale
Return:
Binary image in [B,H,W]
"""
if luminance_mode:
# 3 channels in RGB
luminance = (
0.2126 * image[:, 0, :, :]
+ 0.7152 * image[:, 1, :, :]
+ 0.0722 * image[:, 2, :, :]
)
binary_mask = luminance > threshold
else:
binary_mask = image.mean(dim=1, keepdim=True) > threshold
binary_mask = binary_mask.to(image.dtype)
return binary_mask
def refine_mask(mask, morph_size=0.01):
"""Refines a mask by applying mophological operations.
Args:
mask: A float array of shape [H, W]
morph_size: Size of the morphological kernel relative to the long side of
the image.
Returns:
Refined mask of shape [H, W].
"""
mask_size = max(np.shape(mask))
kernel_radius = 0.5 * morph_size * mask_size
kernel = morphology.disk(np.ceil(kernel_radius))
opened = morphology.binary_opening(mask, kernel)
return opened
def _create_disk_kernel(kernel_size):
_EPS = 1e-7
x = np.arange(kernel_size) - (kernel_size - 1) / 2
xx, yy = np.meshgrid(x, x)
rr = np.sqrt(xx**2 + yy**2)
kernel = np.float32(rr <= np.max(x)) + _EPS
kernel = kernel / np.sum(kernel)
return kernel
def blend_light_source(input_scene, pred_scene, threshold=0.99, luminance_mode=False):
binary_mask = (
get_highlight_mask(
input_scene, threshold=threshold, luminance_mode=luminance_mode
)
> 0.5
).to("cpu", torch.bool)
binary_mask = binary_mask.squeeze() # (h, w)
binary_mask = binary_mask.numpy()
binary_mask = refine_mask(binary_mask)
labeled = skimage.measure.label(binary_mask)
properties = skimage.measure.regionprops(labeled)
max_diameter = 0
for p in properties:
# The diameter of a circle with the same area as the region.
max_diameter = max(max_diameter, p["equivalent_diameter"])
mask = np.float32(binary_mask)
kernel_size = round(1.5 * max_diameter) # default is 1.5
if kernel_size > 0:
kernel = _create_disk_kernel(kernel_size)
mask = cv2.filter2D(mask, -1, kernel)
mask = np.clip(mask * 3.0, 0.0, 1.0)
mask_rgb = np.stack([mask] * 3, axis=0)
mask_rgb = torch.from_numpy(mask_rgb).to(input_scene.device, torch.float32)
blend = input_scene * mask_rgb + pred_scene * (1 - mask_rgb)
else:
blend = pred_scene
return blend
def blend_with_alpha(result, input_img, box, blur_size=31):
"""
Apply alpha blending to paste the specified box region from input_img onto the result image
to reduce boundary artifacts and make the blending more natural.
Args:
result (np.array): inpainting generated image
input_img (np.array): original image
box (tuple): (x_min, x_max, y_min, y_max) representing the paste-back region from the original image
blur_size (int): blur range for the mask, larger values create smoother transitions (recommended 15~50)
Returns:
np.array: image after alpha blending
"""
x_min, x_max, y_min, y_max = box
# alpha mask
mask = np.zeros_like(result, dtype=np.float32)
mask[y_min : y_max + 1, x_min : x_max + 1] = 1.0
# gaussian blur
mask = cv2.GaussianBlur(mask, (blur_size, blur_size), 0)
# alpha blending
blended = (mask * input_img + (1 - mask) * result).astype(np.uint8)
return blended
def IoU(pred, target):
assert pred.shape == target.shape, "Prediction and target must have the same shape."
intersection = np.logical_and(pred, target).sum()
union = np.logical_or(pred, target).sum()
if union == 0:
return 1.0 if intersection == 0 else 0.0
return intersection / union
def mean_IoU(y_true, y_pred, num_classes):
"""
Calculate the mean Intersection over Union (mIoU) score.
Args:
y_true (np.ndarray): Ground truth labels (integer class values).
y_pred (np.ndarray): Predicted labels (integer class values).
num_classes (int): Number of classes.
Returns:
float: The mean IoU score across all classes.
"""
iou_scores = []
for cls in range(num_classes):
# Create binary masks for the current class
true_mask = y_true == cls
pred_mask = y_pred == cls
# Calculate intersection and union
intersection = np.logical_and(true_mask, pred_mask)
union = np.logical_or(true_mask, pred_mask)
# Compute IoU for the current class
if np.sum(union) == 0:
# Handle edge case: no samples for this class
iou_scores.append(np.nan)
else:
iou_scores.append(np.sum(intersection) / np.sum(union))
# Calculate mean IoU, ignoring NaN values (classes without samples)
mean_iou = np.nanmean(iou_scores)
return mean_iou
def RGB2YCbCr(img):
img = img * 255.0
r, g, b = torch.split(img, 1, dim=0)
y = torch.zeros_like(r)
cb = torch.zeros_like(r)
cr = torch.zeros_like(r)
y = 0.257 * r + 0.504 * g + 0.098 * b + 16
y = y / 255.0
cb = -0.148 * r - 0.291 * g + 0.439 * b + 128
cb = cb / 255.0
cr = 0.439 * r - 0.368 * g - 0.071 * b + 128
cr = cr / 255.0
img = torch.cat([y, y, y], dim=0)
return img
def extract_peaks(prob_map, thr=0.5, pool=7):
"""
prob_map: (H, W) after sigmoid
return: tensor of peak coordinates [K, 2] (x, y)
"""
# binary mask
pos = prob_map > thr
# non‑maximum suppression
nms = F.max_pool2d(
prob_map.unsqueeze(0).unsqueeze(0),
kernel_size=pool,
stride=1,
padding=pool // 2,
)
peaks = (prob_map == nms.squeeze()) & pos
ys, xs = torch.nonzero(peaks, as_tuple=True)
return torch.stack([xs, ys], dim=1) # (K, 2)
def pick_radius(radius_map, centers, ksize=3):
"""
radius_map: (H, W) ∈ [0, 1]
centers: (K, 2) x,y
return: (K,) radii in pixel
"""
# H, W = radius_map.shape
pad = ksize // 2
padded = F.pad(
radius_map.unsqueeze(0).unsqueeze(0), (pad, pad, pad, pad), mode="reflect"
)
radii = []
for x, y in centers:
patch = padded[..., y : y + ksize, x : x + ksize]
radii.append(patch.mean()) # 3×3 mean
return torch.stack(radii)
def draw_mask(centers, radii, H, W):
"""
centers: (K, 2) (x, y)
radii: (K,)
return: (H, W) uint8 mask
"""
radii *= 256
mask = np.zeros((H, W), dtype=np.float32)
for (x, y), r in zip(centers, radii):
rr, cc = disk((y.item(), x.item()), r.item(), shape=mask.shape)
mask[rr, cc] = 1
return mask
|