Spaces:
Running
Running
File size: 12,725 Bytes
d62ba4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
from io import BytesIO
from threading import Lock
import numpy as np
import torch
from torch import Tensor
from torch.nn import Parameter
import spaces
from huggingface_hub import hf_hub_download
import gradio as gr
from PIL import Image, ImageDraw, ImageFont
import requests
from model import load_model, process_image, patchify_image
from image import unpatchify
device = "cuda" if torch.cuda.is_available() else "cpu"
PATCH_SIZE = 16
MAX_SEQ_LEN = 1024
model_lock = Lock()
model, tag_list = load_model(
hf_hub_download(repo_id="RedRocket/JTP-3", filename="models/jtp-3-hydra.safetensors"),
device=device
)
model.requires_grad_(False)
tags = {
tag.replace("_", " ").replace("vulva", "pussy"): idx
for idx, tag in enumerate(tag_list)
}
tag_list = list(tags.keys())
FONT = ImageFont.load_default(24)
@spaces.GPU(duration=5)
@torch.no_grad()
def run_classifier(image: Image.Image, cam_depth: int):
patches, patch_coords, patch_valid = patchify_image(image, PATCH_SIZE, MAX_SEQ_LEN)
patches = patches.unsqueeze(0).to(device=device, non_blocking=True)
patch_coords = patch_coords.unsqueeze(0).to(device=device, non_blocking=True)
patch_valid = patch_valid.unsqueeze(0).to(device=device, non_blocking=True)
patches = patches.to(dtype=torch.bfloat16).div_(127.5).sub_(1.0)
patch_coords = patch_coords.to(dtype=torch.int32)
with model_lock:
features = model.forward_intermediates(
patches,
patch_coord=patch_coords,
patch_valid=patch_valid,
indices=cam_depth,
output_dict=True,
output_fmt='NLC'
)
logits = model.forward_head(features["image_features"], patch_valid=patch_valid)
del features["image_features"]
features["patch_coords"] = patch_coords
features["patch_valid"] = patch_valid
del patches, patch_coords, patch_valid
probits = logits[0].float().sigmoid_().mul_(2.0).sub_(1.0) # scale to -1 to 1
values, indices = probits.cpu().topk(250)
predictions = {
tag_list[idx.item()]: val.item()
for idx, val in sorted(
zip(indices, values),
key=lambda item: item[1].item(),
reverse=True
)
}
return features, predictions
@spaces.GPU(duration=5)
@torch.no_grad()
def run_cam(
display_image: Image.Image,
image: Image.Image, features: dict[str, Tensor],
tag_idx: int, cam_depth: int
):
intermediates = features["image_intermediates"]
if len(intermediates) < cam_depth:
features, _ = run_classifier(image, cam_depth)
intermediates = features["image_intermediates"]
elif len(intermediates) > cam_depth:
intermediates = intermediates[-cam_depth:]
patch_coords = features["patch_coords"]
patch_valid = features["patch_valid"]
with model_lock:
saved_q = model.attn_pool.q
saved_p = model.attn_pool.out_proj.weight
try:
model.attn_pool.q = Parameter(saved_q[:, [tag_idx], :], requires_grad=False)
model.attn_pool.out_proj.weight = Parameter(saved_p[[tag_idx], :, :], requires_grad=False)
with torch.enable_grad():
for intermediate in intermediates:
intermediate.requires_grad_(True).retain_grad()
model.forward_head(intermediate, patch_valid=patch_valid)[0, 0].backward()
finally:
model.attn_pool.q = saved_q
model.attn_pool.out_proj.weight = saved_p
cam_1d: Tensor | None = None
for intermediate in intermediates:
patch_grad = (intermediate.grad.float() * intermediate.sign()).sum(dim=(0, 2))
intermediate.grad = None
if cam_1d is None:
cam_1d = patch_grad
else:
cam_1d.add_(patch_grad)
assert cam_1d is not None
cam_2d = unpatchify(cam_1d, patch_coords, patch_valid).cpu().numpy()
return cam_composite(display_image, cam_2d), features
def cam_composite(image: Image.Image, cam: np.ndarray):
"""
Overlays CAM on image and returns a PIL image.
Args:
image_pil: PIL Image (RGB)
cam: 2D numpy array (activation map)
Returns:
PIL.Image.Image with overlay
"""
cam_abs = np.abs(cam)
cam_scale = cam_abs.max()
cam_rgba = np.dstack((
(cam < 0).astype(np.float32),
(cam > 0).astype(np.float32),
np.zeros_like(cam, dtype=np.float32),
cam_abs * (0.5 / cam_scale),
)) # Shape: (H, W, 4)
cam_pil = Image.fromarray((cam_rgba * 255).astype(np.uint8))
cam_pil = cam_pil.resize(image.size, resample=Image.Resampling.NEAREST)
image = Image.blend(
image.convert('RGBA'),
image.convert('L').convert('RGBA'),
0.33
)
image = Image.alpha_composite(image, cam_pil)
draw = ImageDraw.Draw(image)
draw.text(
(image.width - 7, image.height - 7),
f"{cam_scale.item():.4g}",
anchor="rd", font=FONT, fill=(32, 32, 255, 255)
)
return image
def filter_tags(predictions: dict[str, float], threshold: float):
predictions = {
key: value
for key, value in predictions.items()
if value >= threshold
}
tag_str = ", ".join(predictions.keys())
return tag_str, predictions
def resize_image(image: Image.Image) -> Image.Image:
longest_side = max(image.height, image.width)
if longest_side < 1080:
return image
scale = 1080 / longest_side
return image.resize(
(
int(round(image.width * scale)),
int(round(image.height * scale)),
),
resample=Image.Resampling.LANCZOS,
reducing_gap=3.0
)
def image_upload(image: Image.Image):
display_image = resize_image(image)
processed_image = process_image(image, PATCH_SIZE, MAX_SEQ_LEN)
if display_image is not image and processed_image is not image:
image.close()
return (
"", {}, "None", "",
gr.skip() if display_image is image else display_image, display_image,
processed_image,
)
def url_submit(url: str):
resp = requests.get(url, timeout=10)
resp.raise_for_status()
image = Image.open(BytesIO(resp.content))
display_image = resize_image(image)
processed_image = process_image(image, PATCH_SIZE, MAX_SEQ_LEN)
if display_image is not image and processed_image is not image:
image.close()
return (
"", {}, "None",
display_image, display_image,
processed_image,
)
def image_changed(image: Image.Image, threshold: float, cam_depth: int):
features, predictions = run_classifier(image, cam_depth)
return *filter_tags(predictions, threshold), features, predictions
def image_clear():
return (
"", {}, "None", "",
None, None,
None, None, {},
)
def cam_changed(
display_image: Image.Image,
image: Image.Image, features: dict[str, Tensor],
tag: str, cam_depth: int
):
if tag == "None":
return display_image, features
return run_cam(display_image, image, features, tags[tag], cam_depth)
def tag_box_select(evt: gr.SelectData):
return evt.value
custom_css = """
.output-class { display: none; }
.inferno-slider input[type=range] {
background: linear-gradient(to right,
#000004, #1b0c41, #4a0c6b, #781c6d,
#a52c60, #cf4446, #ed6925, #fb9b06,
#f7d13d, #fcffa4
) !important;
background-size: 100% 100% !important;
}
#image_container-image {
width: 100%;
aspect-ratio: 1 / 1;
max-height: 100%;
}
#image_container img {
object-fit: contain !important;
}
.show-api, .show-api-divider {
display: none !important;
}
"""
with gr.Blocks(
title="RedRocket JTP-3 Hydra Demo",
css=custom_css,
analytics_enabled=False,
) as demo:
display_image_state = gr.State()
image_state = gr.State()
features_state = gr.State()
predictions_state = gr.State(value={})
gr.HTML(
"<h1 style='display:flex; flex-flow: row nowrap; align-items: center;'>"
"<a href='https://huggingface.co/RedRocket' target='_blank'>"
"<img src='https://huggingface.co/spaces/RedRocket/README/resolve/main/RedRocket.png' style='width: 2em; margin-right: 0.5em;'>"
"</a>"
"<span><a href='https://huggingface.co/RedRocket' target='_blank'>RedRocket</a> – JTP-3 Hydra Demo</span>"
"<span style='font-weight: normal;'> • <a href='https://huggingface.co/RedRocket/JTP-3' target='_blank'>Download</a></span>"
"</h1>"
)
with gr.Row():
with gr.Column():
with gr.Column():
image = gr.Image(
sources=['upload', 'clipboard'], type='pil',
show_label=False,
show_download_button=False,
show_share_button=False,
elem_id="image_container"
)
url = gr.Textbox(
label="Upload Image via Url:",
placeholder="https://example.com/image.jpg",
max_lines=1,
submit_btn="⮝",
)
with gr.Column():
cam_tag = gr.Dropdown(
value="None", choices=["None"] + tag_list,
label="CAM Attention Overlay (You can also click a tag on the right.)", show_label=True
)
cam_depth = gr.Slider(
minimum=1, maximum=27, step=1, value=1,
label="CAM Depth (1=fastest, more precise; 27=slowest, more general)"
)
with gr.Column():
threshold_slider = gr.Slider(minimum=0.00, maximum=1.00, step=0.01, value=0.30, label="Tag Threshold")
tag_string = gr.Textbox(lines=3, label="Tags", show_label=True, show_copy_button=True)
tag_box = gr.Label(num_top_classes=250, show_label=False, show_heading=False)
image.upload(
fn=image_upload,
inputs=[image],
outputs=[
tag_string, tag_box, cam_tag, url,
image, display_image_state,
image_state,
],
show_progress='minimal',
show_progress_on=[image]
).then(
fn=image_changed,
inputs=[image_state, threshold_slider, cam_depth],
outputs=[
tag_string, tag_box,
features_state, predictions_state,
],
show_progress='minimal',
show_progress_on=[tag_box]
)
url.submit(
fn=url_submit,
inputs=[url],
outputs=[
tag_string, tag_box, cam_tag,
image, display_image_state,
image_state,
],
show_progress='minimal',
show_progress_on=[url]
).then(
fn=image_changed,
inputs=[image_state, threshold_slider, cam_depth],
outputs=[
tag_string, tag_box,
features_state, predictions_state,
],
show_progress='minimal',
show_progress_on=[tag_box]
)
image.clear(
fn=image_clear,
inputs=[],
outputs=[
tag_string, tag_box, cam_tag, url,
image, display_image_state,
image_state, features_state, predictions_state,
],
show_progress='hidden'
)
threshold_slider.input(
fn=filter_tags,
inputs=[predictions_state, threshold_slider],
outputs=[tag_string, tag_box],
trigger_mode='always_last',
show_progress='hidden'
)
cam_tag.input(
fn=cam_changed,
inputs=[
display_image_state,
image_state, features_state,
cam_tag, cam_depth,
],
outputs=[image, features_state],
trigger_mode='always_last',
show_progress='minimal',
show_progress_on=[cam_tag]
)
cam_depth.input(
fn=cam_changed,
inputs=[
display_image_state,
image_state, features_state,
cam_tag, cam_depth,
],
outputs=[image, features_state],
trigger_mode='always_last',
show_progress='minimal',
show_progress_on=[cam_depth]
)
tag_box.select(
fn=tag_box_select,
inputs=[],
outputs=[cam_tag],
trigger_mode='always_last',
show_progress='hidden',
).then(
fn=cam_changed,
inputs=[
display_image_state,
image_state, features_state,
cam_tag, cam_depth,
],
outputs=[image, features_state],
show_progress='minimal',
show_progress_on=[cam_tag]
)
if __name__ == "__main__":
demo.launch()
|