File size: 5,659 Bytes
d62ba4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
from math import ceil

import torch
from torch import Tensor
from torch.nn import Identity

import timm
from timm.models import NaFlexVit

from PIL import Image

from safetensors import safe_open

from image import process_srgb, put_srgb_patch

def sdpa_attn_mask(
    patch_valid: Tensor,
    num_prefix_tokens: int = 0,
    symmetric: bool = True,
    q_len: int | None = None,
    dtype: torch.dtype | None = None,
) -> Tensor:
    mask = patch_valid.unflatten(-1, (1, 1, -1))

    if num_prefix_tokens:
        mask = torch.cat((
            torch.ones(
                *mask.shape[:-1], num_prefix_tokens,
                device=patch_valid.device, dtype=torch.bool
            ), mask
        ), dim=-1)

    return mask

timm.models.naflexvit.create_attention_mask = sdpa_attn_mask

def get_image_size_for_seq(
    image_hw: tuple[int, int],
    patch_size: int = 16,
    max_seq_len: int = 1024,
    max_ratio: float = 1.0,
    eps: float = 1e-5,
) -> tuple[int, int]:
    """Determine image size for sequence length constraint."""

    assert max_ratio >= 1.0
    assert eps * 2 < max_ratio

    h, w = image_hw
    max_py = int(max((h * max_ratio) // patch_size, 1))
    max_px = int(max((w * max_ratio) // patch_size, 1))

    if (max_py * max_px) <= max_seq_len:
        return max_py * patch_size, max_px * patch_size

    def patchify(ratio: float) -> tuple[int, int]:
        return (
            min(int(ceil((h * ratio) / patch_size)), max_py),
            min(int(ceil((w * ratio) / patch_size)), max_px)
        )

    py, px = patchify(eps)
    if (py * px) > max_seq_len:
        raise ValueError(f"Image of size {w}x{h} is too large.")

    ratio = eps
    while (max_ratio - ratio) >= eps:
        mid = (ratio + max_ratio) / 2.0

        mpy, mpx = patchify(mid)
        seq_len = mpy * mpx

        if seq_len > max_seq_len:
            max_ratio = mid
            continue

        ratio = mid
        py = mpy
        px = mpx

        if seq_len == max_seq_len:
            break

    assert py >= 1 and px >= 1
    return py * patch_size, px * patch_size

def process_image(img: Image.Image, patch_size: int, max_seq_len: int) -> Image.Image:
    def compute_resize(wh: tuple[int, int]) -> tuple[int, int]:
        h, w = get_image_size_for_seq((wh[1], wh[0]), patch_size, max_seq_len)
        return w, h

    return process_srgb(img, resize=compute_resize)

def patchify_image(img: Image.Image, patch_size: int, max_seq_len: int, share_memory: bool = False) -> tuple[Tensor, Tensor, Tensor]:
    patches = torch.zeros(max_seq_len, patch_size * patch_size * 3, device="cpu", dtype=torch.uint8)
    patch_coords = torch.zeros(max_seq_len, 2, device="cpu", dtype=torch.int16)
    patch_valid = torch.zeros(max_seq_len, device="cpu", dtype=torch.bool)

    if share_memory:
        patches.share_memory_()
        patch_coords.share_memory_()
        patch_valid.share_memory_()

    put_srgb_patch(img, patches, patch_coords, patch_valid, patch_size)
    return patches, patch_coords, patch_valid

def load_image(
    path: str,
    patch_size: int = 16,
    max_seq_len: int = 1024,
    share_memory: bool = False
) -> tuple[Tensor, Tensor, Tensor]:
    with open(path, "rb", buffering=(1024 * 1024)) as file:
        img: Image.Image = Image.open(file)

        try:
            processed = process_image(img, patch_size, max_seq_len)
        except:
            img.close()
            raise

    if img is not processed:
        img.close()

    return patchify_image(processed, patch_size, max_seq_len, share_memory)

def load_model(path: str, device: torch.device | str | None = None) -> tuple[NaFlexVit, list[str]]:
    with safe_open(path, framework="pt", device="cpu") as file:
        metadata = file.metadata()

        state_dict = {
            key: file.get_tensor(key)
            for key in file.keys()
        }

    arch = metadata["modelspec.architecture"]
    if not arch.startswith("naflexvit_so400m_patch16_siglip"):
        raise ValueError(f"Unrecognized model architecture: {arch}")

    tags = metadata["classifier.labels"].split("\n")

    model = timm.create_model(
        'naflexvit_so400m_patch16_siglip',
        pretrained=False, num_classes=0,
        pos_embed_interp_mode="bilinear",
        weight_init="skip", fix_init=False,
        device="cpu", dtype=torch.bfloat16,
    )

    match arch[31:]:
        case "": # vanilla
            model.reset_classifier(len(tags))

        case "+rr_slim":
            model.reset_classifier(len(tags))

            if "attn_pool.q.weight" not in state_dict:
                model.attn_pool.q = Identity()

            if "head.bias" not in state_dict:
                model.head.bias = None

        case "+rr_chonker":
            from chonker_pool import ChonkerPool

            model.attn_pool = ChonkerPool(
                2, 1152, 72,
                device=device, dtype=torch.bfloat16
            )
            model.head = model.attn_pool.create_head(len(tags))
            model.num_classes = len(tags)

        case "+rr_hydra":
            from hydra_pool import HydraPool

            model.attn_pool = HydraPool.for_state(
                state_dict, "attn_pool.",
                device=device, dtype=torch.bfloat16
            )
            model.head = model.attn_pool.create_head()
            model.num_classes = len(tags)

            state_dict["attn_pool._extra_state"] = { "q_normed": True }

        case _:
            raise ValueError(f"Unrecognized model architecture: {arch}")

    model.eval().to(dtype=torch.bfloat16)
    model.load_state_dict(state_dict, strict=True)
    model.to(device=device)

    return model, tags