JTP-3-Demo / model.py
RedHotTensors's picture
JTP-3 Hydra Release
d62ba4b
raw
history blame
5.66 kB
from math import ceil
import torch
from torch import Tensor
from torch.nn import Identity
import timm
from timm.models import NaFlexVit
from PIL import Image
from safetensors import safe_open
from image import process_srgb, put_srgb_patch
def sdpa_attn_mask(
patch_valid: Tensor,
num_prefix_tokens: int = 0,
symmetric: bool = True,
q_len: int | None = None,
dtype: torch.dtype | None = None,
) -> Tensor:
mask = patch_valid.unflatten(-1, (1, 1, -1))
if num_prefix_tokens:
mask = torch.cat((
torch.ones(
*mask.shape[:-1], num_prefix_tokens,
device=patch_valid.device, dtype=torch.bool
), mask
), dim=-1)
return mask
timm.models.naflexvit.create_attention_mask = sdpa_attn_mask
def get_image_size_for_seq(
image_hw: tuple[int, int],
patch_size: int = 16,
max_seq_len: int = 1024,
max_ratio: float = 1.0,
eps: float = 1e-5,
) -> tuple[int, int]:
"""Determine image size for sequence length constraint."""
assert max_ratio >= 1.0
assert eps * 2 < max_ratio
h, w = image_hw
max_py = int(max((h * max_ratio) // patch_size, 1))
max_px = int(max((w * max_ratio) // patch_size, 1))
if (max_py * max_px) <= max_seq_len:
return max_py * patch_size, max_px * patch_size
def patchify(ratio: float) -> tuple[int, int]:
return (
min(int(ceil((h * ratio) / patch_size)), max_py),
min(int(ceil((w * ratio) / patch_size)), max_px)
)
py, px = patchify(eps)
if (py * px) > max_seq_len:
raise ValueError(f"Image of size {w}x{h} is too large.")
ratio = eps
while (max_ratio - ratio) >= eps:
mid = (ratio + max_ratio) / 2.0
mpy, mpx = patchify(mid)
seq_len = mpy * mpx
if seq_len > max_seq_len:
max_ratio = mid
continue
ratio = mid
py = mpy
px = mpx
if seq_len == max_seq_len:
break
assert py >= 1 and px >= 1
return py * patch_size, px * patch_size
def process_image(img: Image.Image, patch_size: int, max_seq_len: int) -> Image.Image:
def compute_resize(wh: tuple[int, int]) -> tuple[int, int]:
h, w = get_image_size_for_seq((wh[1], wh[0]), patch_size, max_seq_len)
return w, h
return process_srgb(img, resize=compute_resize)
def patchify_image(img: Image.Image, patch_size: int, max_seq_len: int, share_memory: bool = False) -> tuple[Tensor, Tensor, Tensor]:
patches = torch.zeros(max_seq_len, patch_size * patch_size * 3, device="cpu", dtype=torch.uint8)
patch_coords = torch.zeros(max_seq_len, 2, device="cpu", dtype=torch.int16)
patch_valid = torch.zeros(max_seq_len, device="cpu", dtype=torch.bool)
if share_memory:
patches.share_memory_()
patch_coords.share_memory_()
patch_valid.share_memory_()
put_srgb_patch(img, patches, patch_coords, patch_valid, patch_size)
return patches, patch_coords, patch_valid
def load_image(
path: str,
patch_size: int = 16,
max_seq_len: int = 1024,
share_memory: bool = False
) -> tuple[Tensor, Tensor, Tensor]:
with open(path, "rb", buffering=(1024 * 1024)) as file:
img: Image.Image = Image.open(file)
try:
processed = process_image(img, patch_size, max_seq_len)
except:
img.close()
raise
if img is not processed:
img.close()
return patchify_image(processed, patch_size, max_seq_len, share_memory)
def load_model(path: str, device: torch.device | str | None = None) -> tuple[NaFlexVit, list[str]]:
with safe_open(path, framework="pt", device="cpu") as file:
metadata = file.metadata()
state_dict = {
key: file.get_tensor(key)
for key in file.keys()
}
arch = metadata["modelspec.architecture"]
if not arch.startswith("naflexvit_so400m_patch16_siglip"):
raise ValueError(f"Unrecognized model architecture: {arch}")
tags = metadata["classifier.labels"].split("\n")
model = timm.create_model(
'naflexvit_so400m_patch16_siglip',
pretrained=False, num_classes=0,
pos_embed_interp_mode="bilinear",
weight_init="skip", fix_init=False,
device="cpu", dtype=torch.bfloat16,
)
match arch[31:]:
case "": # vanilla
model.reset_classifier(len(tags))
case "+rr_slim":
model.reset_classifier(len(tags))
if "attn_pool.q.weight" not in state_dict:
model.attn_pool.q = Identity()
if "head.bias" not in state_dict:
model.head.bias = None
case "+rr_chonker":
from chonker_pool import ChonkerPool
model.attn_pool = ChonkerPool(
2, 1152, 72,
device=device, dtype=torch.bfloat16
)
model.head = model.attn_pool.create_head(len(tags))
model.num_classes = len(tags)
case "+rr_hydra":
from hydra_pool import HydraPool
model.attn_pool = HydraPool.for_state(
state_dict, "attn_pool.",
device=device, dtype=torch.bfloat16
)
model.head = model.attn_pool.create_head()
model.num_classes = len(tags)
state_dict["attn_pool._extra_state"] = { "q_normed": True }
case _:
raise ValueError(f"Unrecognized model architecture: {arch}")
model.eval().to(dtype=torch.bfloat16)
model.load_state_dict(state_dict, strict=True)
model.to(device=device)
return model, tags