Spaces:
Sleeping
Sleeping
Xia
commited on
Commit
·
c891946
1
Parent(s):
a0f8d56
1st version
Browse files- .gitattributes +1 -0
- RAMEmbeddings.csv +3 -0
- app4.py +24 -0
- searchEmbeddings.py +49 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
RAMEmbeddings.csv filter=lfs diff=lfs merge=lfs -text
|
RAMEmbeddings.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d6959cd0292204993b7c78133b2c7912b096c6f6b72239b11c7a6fdb5787f031
|
| 3 |
+
size 844524643
|
app4.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Fri Jun 16 23:31:34 2023
|
| 4 |
+
|
| 5 |
+
@author: Hua
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import gradio as gr
|
| 9 |
+
|
| 10 |
+
from searchEmbeddings import search
|
| 11 |
+
|
| 12 |
+
def searchEMA(inputs):
|
| 13 |
+
results = search(inputs)
|
| 14 |
+
outputs = f"(1) {results['Author Full Names'][4]} {results['Article Title'][4]} {results['Publication Year'][4]} \n [Abstract] {results['Abstract'][4]} \n(2) {results['Author Full Names'][3]} {results['Article Title'][3]} {results['Publication Year'][3]} \n [Abstract] {results['Abstract'][3]}"
|
| 15 |
+
return outputs
|
| 16 |
+
|
| 17 |
+
with gr.Blocks() as demo:
|
| 18 |
+
gr.Markdown("瑞聚医学数字化设计与制造平台1.0")
|
| 19 |
+
name = gr.Textbox(label = "Question", placeholder = "What is your problem?")
|
| 20 |
+
output = gr.Textbox(label = "Recommended solution")
|
| 21 |
+
greet_btn = gr.Button("Recommened solutions from ramGPT")
|
| 22 |
+
greet_btn.click(fn=searchEMA, inputs=name, outputs=output, api_name="searchEMA")
|
| 23 |
+
|
| 24 |
+
demo.launch(share=True, auth=("admin", "ramGPT"))
|
searchEmbeddings.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""
|
| 3 |
+
Created on Wed Apr 19 14:45:37 2023
|
| 4 |
+
|
| 5 |
+
@author: Hua
|
| 6 |
+
"""
|
| 7 |
+
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import json
|
| 10 |
+
from sentence_transformers import SentenceTransformer
|
| 11 |
+
from sentence_transformers import util
|
| 12 |
+
import numpy as np
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
df = pd.read_csv('RAMEmbeddings.csv')
|
| 16 |
+
|
| 17 |
+
# load gpt2 embeddings
|
| 18 |
+
gpt2bds = df.GPT2Embeddings # get a pd.Series
|
| 19 |
+
gpt2list = [np.float32(np.array(json.loads(i))) for i in gpt2bds] # list of embeddings
|
| 20 |
+
|
| 21 |
+
# define the search function
|
| 22 |
+
def search(inputs):
|
| 23 |
+
# GPT2 embedding
|
| 24 |
+
gpt2_model = SentenceTransformer('sembeddings/model_gpt_trained')
|
| 25 |
+
embeddings = gpt2_model.encode(inputs)
|
| 26 |
+
|
| 27 |
+
# calculate the similarity list to a given embedding
|
| 28 |
+
sims = []
|
| 29 |
+
for i in range(len(gpt2list)):
|
| 30 |
+
sim = util.pytorch_cos_sim(embeddings, gpt2list[i])
|
| 31 |
+
sims.append(sim.item())
|
| 32 |
+
|
| 33 |
+
# find the top-5 similarity items
|
| 34 |
+
sims_arr = np.array(sims, dtype=object)
|
| 35 |
+
inds = np.argpartition(sims_arr, -5)[-5:]
|
| 36 |
+
|
| 37 |
+
# return top 5 items
|
| 38 |
+
return df.loc[inds].reset_index(drop=True)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|