Cardano_7B / app.py
Remostart's picture
Update app.py
b98c632 verified
raw
history blame
3.25 kB
import gradio as gr
import torch
import torch.multiprocessing as mp
from transformers import AutoModelForCausalLM, AutoTokenizer
import spaces
import logging
# Set multiprocessing to 'spawn' for ZeroGPU compatibility
try:
mp.set_start_method('spawn', force=True)
except RuntimeError:
pass
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global variables
model = None
tokenizer = None
MODEL_NAME = "ubiodee/plutus_llm"
# Load tokenizer at startup
try:
logger.info("Loading tokenizer at startup for %s...", MODEL_NAME)
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
use_fast=True,
trust_remote_code=True,
)
logger.info("Primary tokenizer loaded successfully.")
except Exception as e:
logger.error(f"Tokenizer loading failed: {str(e)}")
raise
# Set pad token
if tokenizer.pad_token_id is None:
tokenizer.pad_token_id = tokenizer.eos_token_id
logger.info("Set pad_token_id to eos_token_id: %s", tokenizer.eos_token_id)
# Load model at startup
try:
logger.info("Loading model %s with torch.float16...", MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
trust_remote_code=True,
)
model.eval()
logger.info("Model loaded successfully.")
except Exception as e:
logger.error(f"Model loading failed: {str(e)}")
raise
# Response function
@spaces.GPU(duration=120)
def generate_response(prompt, progress=gr.Progress()):
global model
progress(0.1, desc="Moving model to GPU...")
try:
if torch.cuda.is_available():
model = model.to("cuda")
logger.info("Model moved to GPU.")
else:
logger.warning("GPU not available; using CPU.")
progress(0.3, desc="Tokenizing input...")
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
progress(0.6, desc="Generating response...")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_new_tokens=200,
temperature=0.7,
top_p=0.9,
do_sample=True,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
if response.startswith(prompt):
response = response[len(prompt):].strip()
progress(1.0, desc="Done!")
return response
except Exception as e:
logger.error(f"Inference failed: {str(e)}")
return f"Error during generation: {str(e)}"
finally:
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.info("GPU memory cleared.")
# Gradio UI
demo = gr.Interface(
fn=generate_response,
inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus smart contracts..."),
outputs=gr.Textbox(label="Model Response"),
title="Cardano Plutus AI Assistant",
description="Write Plutus smart contracts on Cardano blockchain."
)
# Launch
demo.launch()