Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import torch.multiprocessing as mp | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import spaces | |
| import logging | |
| # Set multiprocessing to 'spawn' for ZeroGPU compatibility | |
| try: | |
| mp.set_start_method('spawn', force=True) | |
| except RuntimeError: | |
| pass | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Global variables | |
| model = None | |
| tokenizer = None | |
| MODEL_NAME = "ubiodee/plutus_llm" | |
| # Load tokenizer at startup | |
| try: | |
| logger.info("Loading tokenizer at startup for %s...", MODEL_NAME) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_NAME, | |
| use_fast=True, | |
| trust_remote_code=True, | |
| ) | |
| logger.info("Primary tokenizer loaded successfully.") | |
| except Exception as e: | |
| logger.error(f"Tokenizer loading failed: {str(e)}") | |
| raise | |
| # Set pad token | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| logger.info("Set pad_token_id to eos_token_id: %s", tokenizer.eos_token_id) | |
| # Load model at startup | |
| try: | |
| logger.info("Loading model %s with torch.float16...", MODEL_NAME) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| torch_dtype=torch.float16, | |
| trust_remote_code=True, | |
| ) | |
| model.eval() | |
| logger.info("Model loaded successfully.") | |
| except Exception as e: | |
| logger.error(f"Model loading failed: {str(e)}") | |
| raise | |
| # Response function | |
| def generate_response(prompt, progress=gr.Progress()): | |
| global model | |
| progress(0.1, desc="Moving model to GPU...") | |
| try: | |
| if torch.cuda.is_available(): | |
| model = model.to("cuda") | |
| logger.info("Model moved to GPU.") | |
| else: | |
| logger.warning("GPU not available; using CPU.") | |
| progress(0.3, desc="Tokenizing input...") | |
| inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device) | |
| progress(0.6, desc="Generating response...") | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=200, | |
| temperature=0.7, | |
| top_p=0.9, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| if response.startswith(prompt): | |
| response = response[len(prompt):].strip() | |
| progress(1.0, desc="Done!") | |
| return response | |
| except Exception as e: | |
| logger.error(f"Inference failed: {str(e)}") | |
| return f"Error during generation: {str(e)}" | |
| finally: | |
| if torch.cuda.is_available(): | |
| torch.cuda.empty_cache() | |
| logger.info("GPU memory cleared.") | |
| # Gradio UI | |
| demo = gr.Interface( | |
| fn=generate_response, | |
| inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus smart contracts..."), | |
| outputs=gr.Textbox(label="Model Response"), | |
| title="Cardano Plutus AI Assistant", | |
| description="Write Plutus smart contracts on Cardano blockchain." | |
| ) | |
| # Launch | |
| demo.launch() |