Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| from spaces import GPU | |
| import logging | |
| # Set up logging | |
| logging.basicConfig(level=logging.INFO) | |
| logger = logging.getLogger(__name__) | |
| # Load model & tokenizer | |
| MODEL_NAME = "ubiodee/Test_Plutus" | |
| try: | |
| logger.info("Loading tokenizer with use_fast=False...") | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_NAME, | |
| use_fast=False, # Use slow tokenizer to avoid fast tokenizer errors | |
| use_safetensors=True, | |
| trust_remote_code=True, # Allow custom tokenizer code | |
| ) | |
| logger.info("Tokenizer loaded successfully.") | |
| except Exception as e: | |
| logger.error(f"Tokenizer loading failed: {str(e)}") | |
| raise | |
| try: | |
| logger.info("Loading model with 8-bit quantization...") | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| device_map="auto", # Automatically map to GPU/CPU | |
| load_in_8bit=True, # Use 8-bit quantization to match model | |
| torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency | |
| use_safetensors=True, | |
| low_cpu_mem_usage=True, # Reduce CPU memory during loading | |
| trust_remote_code=True, # Allow custom model code | |
| ) | |
| model.eval() | |
| logger.info("Model loaded successfully.") | |
| except Exception as e: | |
| logger.error(f"Model loading failed: {str(e)}") | |
| raise | |
| # Set pad token if not defined | |
| if tokenizer.pad_token_id is None: | |
| tokenizer.pad_token_id = tokenizer.eos_token_id | |
| logger.info("Set pad_token_id to eos_token_id.") | |
| # Move model to GPU if available | |
| if torch.cuda.is_available(): | |
| model.to("cuda") | |
| logger.info("Model moved to GPU.") | |
| else: | |
| logger.warning("No GPU available, using CPU.") | |
| # Response function with GPU decorator | |
| def generate_response(prompt, progress=gr.Progress()): | |
| progress(0.1, desc="Tokenizing input...") | |
| try: | |
| inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
| progress(0.5, desc="Generating response...") | |
| with torch.no_grad(): | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=200, | |
| temperature=0.7, | |
| top_p=0.9, | |
| do_sample=True, | |
| eos_token_id=tokenizer.eos_token_id, | |
| pad_token_id=tokenizer.pad_token_id, | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # Remove the prompt from the output | |
| if response.startswith(prompt): | |
| response = response[len(prompt):].strip() | |
| progress(1.0, desc="Done!") | |
| return response | |
| except Exception as e: | |
| logger.error(f"Inference failed: {str(e)}") | |
| return f"Error during generation: {str(e)}" | |
| # Gradio UI | |
| demo = gr.Interface( | |
| fn=generate_response, | |
| inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."), | |
| outputs=gr.Textbox(label="Model Response"), | |
| title="Cardano Plutus AI Assistant", | |
| description="Write Plutus smart contracts on Cardano blockchain." | |
| ) | |
| # Launch with queueing | |
| demo.queue(max_size=10).launch(enable_queue=True, max_threads=1) |