Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,79 +1,72 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
import spaces
|
| 5 |
import logging
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
# Set up logging
|
| 8 |
logging.basicConfig(level=logging.INFO)
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
-
# Global variables for model and tokenizer (
|
| 12 |
model = None
|
| 13 |
tokenizer = None
|
| 14 |
MODEL_NAME = "ubiodee/Test_Plutus"
|
| 15 |
FALLBACK_TOKENIZER = "NousResearch/Meta-Llama-3-8B"
|
| 16 |
|
| 17 |
-
# Load tokenizer at startup
|
| 18 |
try:
|
| 19 |
logger.info("Loading tokenizer at startup for %s...", MODEL_NAME)
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
MODEL_NAME,
|
| 22 |
-
use_fast=True,
|
| 23 |
trust_remote_code=True,
|
| 24 |
)
|
| 25 |
logger.info("Primary tokenizer loaded successfully.")
|
| 26 |
except Exception as e:
|
| 27 |
logger.warning(f"Primary tokenizer failed: {str(e)}. Using fallback: {FALLBACK_TOKENIZER}")
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
logger.info("Fallback tokenizer loaded successfully.")
|
| 35 |
-
except Exception as fallback_e:
|
| 36 |
-
logger.error(f"Fallback tokenizer failed: {str(fallback_e)}")
|
| 37 |
-
raise
|
| 38 |
|
| 39 |
# Set pad token
|
| 40 |
if tokenizer.pad_token_id is None:
|
| 41 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 42 |
logger.info("Set pad_token_id to eos_token_id: %s", tokenizer.eos_token_id)
|
| 43 |
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
logger.info("Model loaded and moved to GPU.")
|
| 60 |
-
else:
|
| 61 |
-
logger.warning("GPU not available; using CPU.")
|
| 62 |
-
except Exception as e:
|
| 63 |
-
logger.error(f"Model loading failed: {str(e)}")
|
| 64 |
-
raise
|
| 65 |
-
return model
|
| 66 |
|
| 67 |
-
# Response function:
|
| 68 |
-
@spaces.GPU(duration=
|
| 69 |
def generate_response(prompt, progress=gr.Progress()):
|
| 70 |
global model
|
| 71 |
-
progress(0.1, desc="
|
| 72 |
-
model = load_model() # Ensures model is loaded in GPU context
|
| 73 |
-
|
| 74 |
-
progress(0.3, desc="Tokenizing input...")
|
| 75 |
try:
|
| 76 |
-
|
|
|
|
|
|
|
| 77 |
|
| 78 |
progress(0.6, desc="Generating response...")
|
| 79 |
with torch.no_grad():
|
|
@@ -97,6 +90,10 @@ def generate_response(prompt, progress=gr.Progress()):
|
|
| 97 |
except Exception as e:
|
| 98 |
logger.error(f"Inference failed: {str(e)}")
|
| 99 |
return f"Error during generation: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
# Gradio UI
|
| 102 |
demo = gr.Interface(
|
|
@@ -107,5 +104,5 @@ demo = gr.Interface(
|
|
| 107 |
description="Write Plutus smart contracts on Cardano blockchain."
|
| 108 |
)
|
| 109 |
|
| 110 |
-
# Launch
|
| 111 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
+
import torch.multiprocessing as mp
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
import spaces
|
| 6 |
import logging
|
| 7 |
+
import os
|
| 8 |
+
|
| 9 |
+
# Set multiprocessing to 'spawn' for ZeroGPU compatibility
|
| 10 |
+
mp.set_start_method('spawn', force=True)
|
| 11 |
|
| 12 |
# Set up logging
|
| 13 |
logging.basicConfig(level=logging.INFO)
|
| 14 |
logger = logging.getLogger(__name__)
|
| 15 |
|
| 16 |
+
# Global variables for model and tokenizer (load at startup)
|
| 17 |
model = None
|
| 18 |
tokenizer = None
|
| 19 |
MODEL_NAME = "ubiodee/Test_Plutus"
|
| 20 |
FALLBACK_TOKENIZER = "NousResearch/Meta-Llama-3-8B"
|
| 21 |
|
| 22 |
+
# Load tokenizer at startup
|
| 23 |
try:
|
| 24 |
logger.info("Loading tokenizer at startup for %s...", MODEL_NAME)
|
| 25 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 26 |
MODEL_NAME,
|
| 27 |
+
use_fast=True,
|
| 28 |
trust_remote_code=True,
|
| 29 |
)
|
| 30 |
logger.info("Primary tokenizer loaded successfully.")
|
| 31 |
except Exception as e:
|
| 32 |
logger.warning(f"Primary tokenizer failed: {str(e)}. Using fallback: {FALLBACK_TOKENIZER}")
|
| 33 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 34 |
+
FALLBACK_TOKENIZER,
|
| 35 |
+
use_fast=True,
|
| 36 |
+
trust_remote_code=True,
|
| 37 |
+
)
|
| 38 |
+
logger.info("Fallback tokenizer loaded successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# Set pad token
|
| 41 |
if tokenizer.pad_token_id is None:
|
| 42 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 43 |
logger.info("Set pad_token_id to eos_token_id: %s", tokenizer.eos_token_id)
|
| 44 |
|
| 45 |
+
# Load model at startup (CPU/fp16, move to GPU in decorated function)
|
| 46 |
+
try:
|
| 47 |
+
logger.info("Loading model %s with torch.float16 on CPU...", MODEL_NAME)
|
| 48 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 49 |
+
MODEL_NAME,
|
| 50 |
+
torch_dtype=torch.float16,
|
| 51 |
+
low_cpu_mem_usage=True,
|
| 52 |
+
trust_remote_code=True,
|
| 53 |
+
device_map="cpu", # Load on CPU to avoid CUDA init issues
|
| 54 |
+
)
|
| 55 |
+
model.eval()
|
| 56 |
+
logger.info("Model loaded successfully on CPU.")
|
| 57 |
+
except Exception as e:
|
| 58 |
+
logger.error(f"Model loading failed: {str(e)}")
|
| 59 |
+
raise
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
+
# Response function: Transfer to GPU and infer (no CUDA init here)
|
| 62 |
+
@spaces.GPU(duration=120) # Reduced for quota efficiency
|
| 63 |
def generate_response(prompt, progress=gr.Progress()):
|
| 64 |
global model
|
| 65 |
+
progress(0.1, desc="Moving model to GPU...")
|
|
|
|
|
|
|
|
|
|
| 66 |
try:
|
| 67 |
+
model = model.to("cuda") # Move to GPU in decorated context
|
| 68 |
+
progress(0.3, desc="Tokenizing input...")
|
| 69 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to("cuda")
|
| 70 |
|
| 71 |
progress(0.6, desc="Generating response...")
|
| 72 |
with torch.no_grad():
|
|
|
|
| 90 |
except Exception as e:
|
| 91 |
logger.error(f"Inference failed: {str(e)}")
|
| 92 |
return f"Error during generation: {str(e)}"
|
| 93 |
+
finally:
|
| 94 |
+
# Clean up GPU memory
|
| 95 |
+
if torch.cuda.is_available():
|
| 96 |
+
torch.cuda.empty_cache()
|
| 97 |
|
| 98 |
# Gradio UI
|
| 99 |
demo = gr.Interface(
|
|
|
|
| 104 |
description="Write Plutus smart contracts on Cardano blockchain."
|
| 105 |
)
|
| 106 |
|
| 107 |
+
# Launch without queue args (ZeroGPU handles it)
|
| 108 |
demo.launch()
|