Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,59 +8,70 @@ import logging
|
|
| 8 |
logging.basicConfig(level=logging.INFO)
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
| 12 |
MODEL_NAME = "ubiodee/Test_Plutus"
|
|
|
|
| 13 |
|
|
|
|
| 14 |
try:
|
| 15 |
-
logger.info("Loading tokenizer with
|
| 16 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 17 |
MODEL_NAME,
|
| 18 |
-
use_fast=False,
|
| 19 |
-
|
| 20 |
-
trust_remote_code=True, # Allow custom tokenizer code
|
| 21 |
)
|
| 22 |
-
logger.info("
|
| 23 |
except Exception as e:
|
| 24 |
-
logger.
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
-
MODEL_NAME,
|
| 31 |
-
device_map="auto", # Automatically map to GPU/CPU
|
| 32 |
-
load_in_8bit=True, # Use 8-bit quantization to match model
|
| 33 |
-
torch_dtype=torch.bfloat16, # Use bfloat16 for efficiency
|
| 34 |
-
use_safetensors=True,
|
| 35 |
-
low_cpu_mem_usage=True, # Reduce CPU memory during loading
|
| 36 |
-
trust_remote_code=True, # Allow custom model code
|
| 37 |
)
|
| 38 |
-
|
| 39 |
-
logger.info("Model loaded successfully.")
|
| 40 |
-
except Exception as e:
|
| 41 |
-
logger.error(f"Model loading failed: {str(e)}")
|
| 42 |
-
raise
|
| 43 |
|
| 44 |
-
# Set pad token
|
| 45 |
if tokenizer.pad_token_id is None:
|
| 46 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 47 |
logger.info("Set pad_token_id to eos_token_id.")
|
| 48 |
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
model
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
# Response function
|
| 57 |
-
@spaces.GPU
|
| 58 |
def generate_response(prompt, progress=gr.Progress()):
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
try:
|
| 61 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 62 |
|
| 63 |
-
progress(0.
|
| 64 |
with torch.no_grad():
|
| 65 |
outputs = model.generate(
|
| 66 |
**inputs,
|
|
@@ -73,7 +84,7 @@ def generate_response(prompt, progress=gr.Progress()):
|
|
| 73 |
)
|
| 74 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 75 |
|
| 76 |
-
# Remove
|
| 77 |
if response.startswith(prompt):
|
| 78 |
response = response[len(prompt):].strip()
|
| 79 |
|
|
@@ -93,4 +104,4 @@ demo = gr.Interface(
|
|
| 93 |
)
|
| 94 |
|
| 95 |
# Launch with queueing
|
| 96 |
-
demo.queue(max_size=
|
|
|
|
| 8 |
logging.basicConfig(level=logging.INFO)
|
| 9 |
logger = logging.getLogger(__name__)
|
| 10 |
|
| 11 |
+
# Global variables for model and tokenizer (lazy loading)
|
| 12 |
+
model = None
|
| 13 |
+
tokenizer = None
|
| 14 |
MODEL_NAME = "ubiodee/Test_Plutus"
|
| 15 |
+
FALLBACK_TOKENIZER = "gpt2"
|
| 16 |
|
| 17 |
+
# Load tokenizer at startup (lightweight, no model yet)
|
| 18 |
try:
|
| 19 |
+
logger.info("Loading tokenizer at startup with legacy versions...")
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
MODEL_NAME,
|
| 22 |
+
use_fast=False,
|
| 23 |
+
trust_remote_code=True,
|
|
|
|
| 24 |
)
|
| 25 |
+
logger.info("Primary tokenizer loaded successfully.")
|
| 26 |
except Exception as e:
|
| 27 |
+
logger.warning(f"Primary tokenizer failed: {str(e)}. Using fallback.")
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 29 |
+
FALLBACK_TOKENIZER,
|
| 30 |
+
use_fast=False,
|
| 31 |
+
trust_remote_code=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
)
|
| 33 |
+
logger.info("Fallback tokenizer loaded.")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
+
# Set pad token
|
| 36 |
if tokenizer.pad_token_id is None:
|
| 37 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 38 |
logger.info("Set pad_token_id to eos_token_id.")
|
| 39 |
|
| 40 |
+
def load_model():
|
| 41 |
+
"""Load model inside GPU context to enable quantization."""
|
| 42 |
+
global model
|
| 43 |
+
if model is None:
|
| 44 |
+
try:
|
| 45 |
+
logger.info("Loading model with CPU fallback (full precision)...")
|
| 46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
+
MODEL_NAME,
|
| 48 |
+
torch_dtype=torch.float16, # Use fp16 for memory efficiency without bitsandbytes
|
| 49 |
+
low_cpu_mem_usage=True,
|
| 50 |
+
trust_remote_code=True,
|
| 51 |
+
)
|
| 52 |
+
model.eval()
|
| 53 |
+
if torch.cuda.is_available():
|
| 54 |
+
model.to("cuda")
|
| 55 |
+
logger.info("Model loaded and moved to GPU.")
|
| 56 |
+
else:
|
| 57 |
+
logger.warning("GPU not available; using CPU.")
|
| 58 |
+
except Exception as e:
|
| 59 |
+
logger.error(f"Model loading failed: {str(e)}")
|
| 60 |
+
raise
|
| 61 |
+
return model
|
| 62 |
|
| 63 |
+
# Response function: Load model on first call, then reuse
|
| 64 |
+
@spaces.GPU(duration=300) # Allow up to 5min for loading + inference
|
| 65 |
def generate_response(prompt, progress=gr.Progress()):
|
| 66 |
+
global model
|
| 67 |
+
progress(0.1, desc="Loading model if needed...")
|
| 68 |
+
model = load_model() # Ensures model is loaded in GPU context
|
| 69 |
+
|
| 70 |
+
progress(0.3, desc="Tokenizing input...")
|
| 71 |
try:
|
| 72 |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 73 |
|
| 74 |
+
progress(0.6, desc="Generating response...")
|
| 75 |
with torch.no_grad():
|
| 76 |
outputs = model.generate(
|
| 77 |
**inputs,
|
|
|
|
| 84 |
)
|
| 85 |
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 86 |
|
| 87 |
+
# Remove prompt from output
|
| 88 |
if response.startswith(prompt):
|
| 89 |
response = response[len(prompt):].strip()
|
| 90 |
|
|
|
|
| 104 |
)
|
| 105 |
|
| 106 |
# Launch with queueing
|
| 107 |
+
demo.queue(max_size=5).launch(enable_queue=True, max_threads=1)
|