Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,106 +1,56 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
-
import torch.multiprocessing as mp
|
| 4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
-
import
|
| 6 |
-
import logging
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
try:
|
| 10 |
-
mp.set_start_method('spawn', force=True)
|
| 11 |
-
except RuntimeError:
|
| 12 |
-
pass
|
| 13 |
-
|
| 14 |
-
# Set up logging
|
| 15 |
-
logging.basicConfig(level=logging.INFO)
|
| 16 |
-
logger = logging.getLogger(__name__)
|
| 17 |
-
|
| 18 |
-
# Global variables
|
| 19 |
-
model = None
|
| 20 |
-
tokenizer = None
|
| 21 |
MODEL_NAME = "ubiodee/plutus_llm"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
trust_remote_code=True,
|
| 48 |
-
)
|
| 49 |
-
model.eval()
|
| 50 |
-
logger.info("Model loaded successfully.")
|
| 51 |
-
except Exception as e:
|
| 52 |
-
logger.error(f"Model loading failed: {str(e)}")
|
| 53 |
-
raise
|
| 54 |
-
|
| 55 |
-
# Response function
|
| 56 |
-
@spaces.GPU(duration=120)
|
| 57 |
-
def generate_response(prompt, progress=gr.Progress()):
|
| 58 |
-
global model
|
| 59 |
-
progress(0.1, desc="Moving model to GPU...")
|
| 60 |
-
try:
|
| 61 |
-
if torch.cuda.is_available():
|
| 62 |
-
model = model.to("cuda")
|
| 63 |
-
logger.info("Model moved to GPU.")
|
| 64 |
-
else:
|
| 65 |
-
logger.warning("GPU not available; using CPU.")
|
| 66 |
-
|
| 67 |
-
progress(0.3, desc="Tokenizing input...")
|
| 68 |
-
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 69 |
-
|
| 70 |
-
progress(0.6, desc="Generating response...")
|
| 71 |
-
with torch.no_grad():
|
| 72 |
-
outputs = model.generate(
|
| 73 |
-
**inputs,
|
| 74 |
-
max_new_tokens=200,
|
| 75 |
-
temperature=0.7,
|
| 76 |
-
top_p=0.9,
|
| 77 |
-
do_sample=True,
|
| 78 |
-
eos_token_id=tokenizer.eos_token_id,
|
| 79 |
-
pad_token_id=tokenizer.pad_token_id,
|
| 80 |
-
)
|
| 81 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 82 |
-
|
| 83 |
-
if response.startswith(prompt):
|
| 84 |
-
response = response[len(prompt):].strip()
|
| 85 |
-
|
| 86 |
-
progress(1.0, desc="Done!")
|
| 87 |
-
return response
|
| 88 |
-
except Exception as e:
|
| 89 |
-
logger.error(f"Inference failed: {str(e)}")
|
| 90 |
-
return f"Error during generation: {str(e)}"
|
| 91 |
-
finally:
|
| 92 |
-
if torch.cuda.is_available():
|
| 93 |
-
torch.cuda.empty_cache()
|
| 94 |
-
logger.info("GPU memory cleared.")
|
| 95 |
|
| 96 |
# Gradio UI
|
| 97 |
demo = gr.Interface(
|
| 98 |
fn=generate_response,
|
| 99 |
-
inputs=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
outputs=gr.Textbox(label="Model Response"),
|
| 101 |
title="Cardano Plutus AI Assistant",
|
| 102 |
-
description="
|
| 103 |
)
|
| 104 |
|
| 105 |
-
|
| 106 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
|
|
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
from spaces import GPU # Import ZeroGPU decorator
|
|
|
|
| 5 |
|
| 6 |
+
# Load model & tokenizer (runs on CPU at startup)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
MODEL_NAME = "ubiodee/plutus_llm"
|
| 8 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False)
|
| 9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 10 |
+
MODEL_NAME,
|
| 11 |
+
torch_dtype=torch.float16,
|
| 12 |
+
device_map="auto",
|
| 13 |
+
load_in_8bit=True
|
| 14 |
+
)
|
| 15 |
|
| 16 |
+
# Set padding token
|
| 17 |
+
if tokenizer.pad_token is None:
|
| 18 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 19 |
+
|
| 20 |
+
model.eval()
|
| 21 |
+
|
| 22 |
+
# Response function with ZeroGPU decorator
|
| 23 |
+
@GPU
|
| 24 |
+
def generate_response(prompt, max_new_tokens=200, temperature=0.7, top_p=0.9):
|
| 25 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True).to("cuda")
|
| 26 |
+
with torch.no_grad():
|
| 27 |
+
outputs = model.generate(
|
| 28 |
+
**inputs,
|
| 29 |
+
max_new_tokens=max_new_tokens,
|
| 30 |
+
temperature=temperature,
|
| 31 |
+
top_p=top_p,
|
| 32 |
+
do_sample=True,
|
| 33 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 34 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 35 |
+
)
|
| 36 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 37 |
+
if response.startswith(prompt):
|
| 38 |
+
response = response[len(prompt):].strip()
|
| 39 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
# Gradio UI
|
| 42 |
demo = gr.Interface(
|
| 43 |
fn=generate_response,
|
| 44 |
+
inputs=[
|
| 45 |
+
gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."),
|
| 46 |
+
gr.Slider(label="Max New Tokens", minimum=50, maximum=500, value=200, step=10),
|
| 47 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=2.0, value=0.7, step=0.1),
|
| 48 |
+
gr.Slider(label="Top P", minimum=0.1, maximum=1.0, value=0.9, step=0.05)
|
| 49 |
+
],
|
| 50 |
outputs=gr.Textbox(label="Model Response"),
|
| 51 |
title="Cardano Plutus AI Assistant",
|
| 52 |
+
description="Ask questions about Plutus smart contracts or Cardano blockchain using ubiodee/plutus_llm."
|
| 53 |
)
|
| 54 |
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
demo.launch()
|