Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,9 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
-
import spaces
|
| 5 |
import logging
|
|
|
|
| 6 |
|
| 7 |
# Set up logging
|
| 8 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -12,40 +13,44 @@ logger = logging.getLogger(__name__)
|
|
| 12 |
model = None
|
| 13 |
tokenizer = None
|
| 14 |
MODEL_NAME = "ubiodee/Test_Plutus"
|
| 15 |
-
FALLBACK_TOKENIZER = "
|
| 16 |
|
| 17 |
# Load tokenizer at startup (lightweight, no model yet)
|
| 18 |
try:
|
| 19 |
-
logger.info("Loading tokenizer at startup
|
| 20 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 21 |
MODEL_NAME,
|
| 22 |
-
use_fast=
|
| 23 |
trust_remote_code=True,
|
| 24 |
)
|
| 25 |
logger.info("Primary tokenizer loaded successfully.")
|
| 26 |
except Exception as e:
|
| 27 |
-
logger.warning(f"Primary tokenizer failed: {str(e)}. Using fallback
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 34 |
|
| 35 |
# Set pad token
|
| 36 |
if tokenizer.pad_token_id is None:
|
| 37 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 38 |
-
logger.info("Set pad_token_id to eos_token_id.
|
| 39 |
|
| 40 |
def load_model():
|
| 41 |
"""Load model inside GPU context."""
|
| 42 |
global model
|
| 43 |
if model is None:
|
| 44 |
try:
|
| 45 |
-
logger.info("Loading model with
|
| 46 |
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
MODEL_NAME,
|
| 48 |
-
torch_dtype=torch.float16, # Use fp16 for
|
| 49 |
low_cpu_mem_usage=True,
|
| 50 |
trust_remote_code=True,
|
| 51 |
)
|
|
@@ -69,7 +74,7 @@ def generate_response(prompt, progress=gr.Progress()):
|
|
| 69 |
|
| 70 |
progress(0.3, desc="Tokenizing input...")
|
| 71 |
try:
|
| 72 |
-
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
| 73 |
|
| 74 |
progress(0.6, desc="Generating response...")
|
| 75 |
with torch.no_grad():
|
|
@@ -97,11 +102,11 @@ def generate_response(prompt, progress=gr.Progress()):
|
|
| 97 |
# Gradio UI
|
| 98 |
demo = gr.Interface(
|
| 99 |
fn=generate_response,
|
| 100 |
-
inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus..."),
|
| 101 |
outputs=gr.Textbox(label="Model Response"),
|
| 102 |
title="Cardano Plutus AI Assistant",
|
| 103 |
description="Write Plutus smart contracts on Cardano blockchain."
|
| 104 |
)
|
| 105 |
|
| 106 |
-
# Launch with queueing
|
| 107 |
-
demo.
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
import spaces
|
| 5 |
import logging
|
| 6 |
+
import json
|
| 7 |
|
| 8 |
# Set up logging
|
| 9 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 13 |
model = None
|
| 14 |
tokenizer = None
|
| 15 |
MODEL_NAME = "ubiodee/Test_Plutus"
|
| 16 |
+
FALLBACK_TOKENIZER = "NousResearch/Meta-Llama-3-8B"
|
| 17 |
|
| 18 |
# Load tokenizer at startup (lightweight, no model yet)
|
| 19 |
try:
|
| 20 |
+
logger.info("Loading tokenizer at startup for %s...", MODEL_NAME)
|
| 21 |
tokenizer = AutoTokenizer.from_pretrained(
|
| 22 |
MODEL_NAME,
|
| 23 |
+
use_fast=True, # Llama-3 uses fast tokenizer
|
| 24 |
trust_remote_code=True,
|
| 25 |
)
|
| 26 |
logger.info("Primary tokenizer loaded successfully.")
|
| 27 |
except Exception as e:
|
| 28 |
+
logger.warning(f"Primary tokenizer failed: {str(e)}. Using fallback: {FALLBACK_TOKENIZER}")
|
| 29 |
+
try:
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 31 |
+
FALLBACK_TOKENIZER,
|
| 32 |
+
use_fast=True,
|
| 33 |
+
trust_remote_code=True,
|
| 34 |
+
)
|
| 35 |
+
logger.info("Fallback tokenizer loaded successfully.")
|
| 36 |
+
except Exception as fallback_e:
|
| 37 |
+
logger.error(f"Fallback tokenizer failed: {str(fallback_e)}")
|
| 38 |
+
raise
|
| 39 |
|
| 40 |
# Set pad token
|
| 41 |
if tokenizer.pad_token_id is None:
|
| 42 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 43 |
+
logger.info("Set pad_token_id to eos_token_id: %s", tokenizer.eos_token_id)
|
| 44 |
|
| 45 |
def load_model():
|
| 46 |
"""Load model inside GPU context."""
|
| 47 |
global model
|
| 48 |
if model is None:
|
| 49 |
try:
|
| 50 |
+
logger.info("Loading model %s with torch.float16...", MODEL_NAME)
|
| 51 |
model = AutoModelForCausalLM.from_pretrained(
|
| 52 |
MODEL_NAME,
|
| 53 |
+
torch_dtype=torch.float16, # Use fp16 for ZeroGPU
|
| 54 |
low_cpu_mem_usage=True,
|
| 55 |
trust_remote_code=True,
|
| 56 |
)
|
|
|
|
| 74 |
|
| 75 |
progress(0.3, desc="Tokenizing input...")
|
| 76 |
try:
|
| 77 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512).to(model.device)
|
| 78 |
|
| 79 |
progress(0.6, desc="Generating response...")
|
| 80 |
with torch.no_grad():
|
|
|
|
| 102 |
# Gradio UI
|
| 103 |
demo = gr.Interface(
|
| 104 |
fn=generate_response,
|
| 105 |
+
inputs=gr.Textbox(label="Enter your prompt", lines=4, placeholder="Ask about Plutus smart contracts..."),
|
| 106 |
outputs=gr.Textbox(label="Model Response"),
|
| 107 |
title="Cardano Plutus AI Assistant",
|
| 108 |
description="Write Plutus smart contracts on Cardano blockchain."
|
| 109 |
)
|
| 110 |
|
| 111 |
+
# Launch with simplified queueing
|
| 112 |
+
demo.launch(queue=True, max_queue_size=5)
|