File size: 9,612 Bytes
f825332 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
# farmlingua/app/agents/crew_pipeline.pymemorysection
import os
import sys
import re
import uuid
import requests
import joblib
import faiss
import numpy as np
import torch
import fasttext
from huggingface_hub import hf_hub_download
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from sentence_transformers import SentenceTransformer
from app.utils import config
from app.utils.memory import memory_store # memory module
from typing import List
hf_cache = "/models/huggingface"
os.environ["HF_HOME"] = hf_cache
os.environ["TRANSFORMERS_CACHE"] = hf_cache
os.environ["HUGGINGFACE_HUB_CACHE"] = hf_cache
os.makedirs(hf_cache, exist_ok=True)
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if BASE_DIR not in sys.path:
sys.path.insert(0, BASE_DIR)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
try:
classifier = joblib.load(config.CLASSIFIER_PATH)
except Exception:
classifier = None
print(f"Loading expert model ({config.EXPERT_MODEL_NAME})...")
tokenizer = AutoTokenizer.from_pretrained(config.EXPERT_MODEL_NAME, use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
config.EXPERT_MODEL_NAME,
torch_dtype="auto",
device_map="auto"
)
embedder = SentenceTransformer(config.EMBEDDING_MODEL)
# language detector
print(f"Loading FastText language identifier ({config.LANG_ID_MODEL_REPO})...")
lang_model_path = hf_hub_download(
repo_id=config.LANG_ID_MODEL_REPO,
filename=getattr(config, "LANG_ID_MODEL_FILE", "model.bin")
)
lang_identifier = fasttext.load_model(lang_model_path)
def detect_language(text: str, top_k: int = 1):
if not text or not text.strip():
return [("eng_Latn", 1.0)]
clean_text = text.replace("\n", " ").strip()
labels, probs = lang_identifier.predict(clean_text, k=top_k)
return [(l.replace("__label__", ""), float(p)) for l, p in zip(labels, probs)]
# Translation model
print(f"Loading translation model ({config.TRANSLATION_MODEL_NAME})...")
translation_pipeline = pipeline(
"translation",
model=config.TRANSLATION_MODEL_NAME,
device=0 if DEVICE == "cuda" else -1,
max_new_tokens=400,
)
SUPPORTED_LANGS = {
"eng_Latn": "English",
"ibo_Latn": "Igbo",
"yor_Latn": "Yoruba",
"hau_Latn": "Hausa",
"swh_Latn": "Swahili",
"amh_Latn": "Amharic",
}
# Text chunking
_SENTENCE_SPLIT_RE = re.compile(r'(?<=[.!?])\s+')
def chunk_text(text: str, max_len: int = 400) -> List[str]:
if not text:
return []
sentences = _SENTENCE_SPLIT_RE.split(text)
chunks, current = [], ""
for s in sentences:
if not s:
continue
if len(current) + len(s) + 1 <= max_len:
current = (current + " " + s).strip()
else:
if current:
chunks.append(current.strip())
current = s.strip()
if current:
chunks.append(current.strip())
return chunks
def translate_text(text: str, src_lang: str, tgt_lang: str, max_chunk_len: int = 400) -> str:
if not text.strip():
return text
chunks = chunk_text(text, max_len=max_chunk_len)
translated_parts = []
for chunk in chunks:
res = translation_pipeline(chunk, src_lang=src_lang, tgt_lang=tgt_lang)
translated_parts.append(res[0]["translation_text"])
return " ".join(translated_parts).strip()
# RAG retrieval
def retrieve_docs(query: str, vs_path: str):
if not vs_path or not os.path.exists(vs_path):
return None
try:
index = faiss.read_index(str(vs_path))
except Exception:
return None
query_vec = np.array([embedder.encode(query)], dtype=np.float32)
D, I = index.search(query_vec, k=3)
if D[0][0] == 0:
return None
meta_path = str(vs_path) + "_meta.npy"
if os.path.exists(meta_path):
metadata = np.load(meta_path, allow_pickle=True).item()
docs = [metadata.get(str(idx), "") for idx in I[0] if str(idx) in metadata]
docs = [d for d in docs if d]
return "\n\n".join(docs) if docs else None
return None
def get_weather(state_name: str) -> str:
url = "http://api.weatherapi.com/v1/current.json"
params = {"key": config.WEATHER_API_KEY, "q": f"{state_name}, Nigeria", "aqi": "no"}
r = requests.get(url, params=params, timeout=10)
if r.status_code != 200:
return f"Unable to retrieve weather for {state_name}."
data = r.json()
return (
f"Weather in {state_name}:\n"
f"- Condition: {data['current']['condition']['text']}\n"
f"- Temperature: {data['current']['temp_c']}°C\n"
f"- Humidity: {data['current']['humidity']}%\n"
f"- Wind: {data['current']['wind_kph']} kph"
)
def detect_intent(query: str):
q_lower = (query or "").lower()
if any(word in q_lower for word in ["weather", "temperature", "rain", "forecast"]):
for state in getattr(config, "STATES", []):
if state.lower() in q_lower:
return "weather", state
return "weather", None
if any(word in q_lower for word in ["latest", "update", "breaking", "news", "current", "predict"]):
return "live_update", None
if hasattr(classifier, "predict") and hasattr(classifier, "predict_proba"):
try:
predicted_intent = classifier.predict([query])[0]
confidence = max(classifier.predict_proba([query])[0])
if confidence < getattr(config, "CLASSIFIER_CONFIDENCE_THRESHOLD", 0.6):
return "low_confidence", None
return predicted_intent, None
except Exception:
pass
return "normal", None
# expert runner
def run_qwen(messages: List[dict], max_new_tokens: int = 1300) -> str:
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**inputs,
max_new_tokens=max_new_tokens,
temperature=0.4,
repetition_penalty=1.1
)
output_ids = generated_ids[0][len(inputs.input_ids[0]):].tolist()
return tokenizer.decode(output_ids, skip_special_tokens=True).strip()
# Memory
MAX_HISTORY_MESSAGES = getattr(config, "MAX_HISTORY_MESSAGES", 30)
def build_messages_from_history(history: List[dict], system_prompt: str) -> List[dict]:
msgs = [{"role": "system", "content": system_prompt}]
msgs.extend(history)
return msgs
# Main pipeline
def run_pipeline(user_query: str, session_id: str = None):
"""
Run FarmLingua pipeline with per-session memory.
Each session_id keeps its own history.
"""
if session_id is None:
session_id = str(uuid.uuid4()) # fallback unique session
# Language detection
lang_label, prob = detect_language(user_query, top_k=1)[0]
if lang_label not in SUPPORTED_LANGS:
lang_label = "eng_Latn"
translated_query = (
translate_text(user_query, src_lang=lang_label, tgt_lang="eng_Latn")
if lang_label != "eng_Latn"
else user_query
)
intent, extra = detect_intent(translated_query)
# Load conversation history
history = memory_store.get_history(session_id) or []
if len(history) > MAX_HISTORY_MESSAGES:
history = history[-MAX_HISTORY_MESSAGES:]
history.append({"role": "user", "content": translated_query})
system_prompt = (
"You are FarmLingua, an AI assistant for Nigerian farmers. "
"Answer directly without repeating the question. "
"Use clear farmer-friendly English with emojis . "
"Avoid jargon and irrelevant details. "
"If asked who built you, say: 'KawaFarm LTD developed me to help farmers.'"
)
if intent == "weather" and extra:
weather_text = get_weather(extra)
history.append({"role": "user", "content": f"Rewrite this weather update simply for farmers:\n{weather_text}"})
messages_for_qwen = build_messages_from_history(history, system_prompt)
english_answer = run_qwen(messages_for_qwen, max_new_tokens=256)
else:
if intent == "live_update":
context = retrieve_docs(translated_query, config.LIVE_VS_PATH)
if context:
history.append({"role": "user", "content": f"Latest agricultural updates:\n{context}"})
if intent == "low_confidence":
context = retrieve_docs(translated_query, config.STATIC_VS_PATH)
if context:
history.append({"role": "user", "content": f"Reference information:\n{context}"})
messages_for_qwen = build_messages_from_history(history, system_prompt)
english_answer = run_qwen(messages_for_qwen, max_new_tokens=700)
# Save assistant reply
history.append({"role": "assistant", "content": english_answer})
if len(history) > MAX_HISTORY_MESSAGES:
history = history[-MAX_HISTORY_MESSAGES:]
memory_store.save_history(session_id, history)
# Translate back if needed
final_answer = (
translate_text(english_answer, src_lang="eng_Latn", tgt_lang=lang_label)
if lang_label != "eng_Latn"
else english_answer
)
return {
"session_id": session_id,
"detected_language": SUPPORTED_LANGS.get(lang_label, "Unknown"),
"answer": final_answer
}
|