Spaces:
Sleeping
Sleeping
init
Browse files- app.py +213 -0
- requirements.txt +5 -0
- resnet_v2_attributes.pickle +3 -0
- resnet_v2_model.h5 +3 -0
app.py
ADDED
|
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_webrtc import WebRTC
|
| 3 |
+
import os
|
| 4 |
+
import pickle
|
| 5 |
+
import numpy as np
|
| 6 |
+
import cv2
|
| 7 |
+
import tensorflow as tf
|
| 8 |
+
from sklearn.preprocessing import OneHotEncoder
|
| 9 |
+
from tensorflow.keras.callbacks import EarlyStopping
|
| 10 |
+
from tensorflow.keras import Model
|
| 11 |
+
from tensorflow.image import resize
|
| 12 |
+
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
| 13 |
+
from keras_vggface.vggface import VGGFace
|
| 14 |
+
from tensorflow.keras.models import Sequential
|
| 15 |
+
from tensorflow.keras.layers import RandomFlip, RandomRotation, RandomBrightness, RandomContrast, RandomTranslation, Input, Dense, Flatten
|
| 16 |
+
from sklearn.model_selection import train_test_split
|
| 17 |
+
|
| 18 |
+
class ResNetModel():
|
| 19 |
+
def __init__(self):
|
| 20 |
+
self.data_augmentation = Sequential([
|
| 21 |
+
RandomBrightness(factor=0.2),
|
| 22 |
+
RandomContrast(factor=0.2),
|
| 23 |
+
RandomFlip("horizontal"),
|
| 24 |
+
RandomTranslation(height_factor=0.1, width_factor=0.1),
|
| 25 |
+
RandomRotation(factor=0.1)
|
| 26 |
+
])
|
| 27 |
+
|
| 28 |
+
def load_data(self, data_path: str, input_size:tuple = (224, 224)):
|
| 29 |
+
image_list = []
|
| 30 |
+
class_list = []
|
| 31 |
+
self.input_size = input_size
|
| 32 |
+
faceCascade = cv2.CascadeClassifier('Cascades/haarcascade_frontalface_default.xml')
|
| 33 |
+
for label in os.listdir(data_path):
|
| 34 |
+
if len(os.listdir(os.path.join(data_path, label))) < 5:
|
| 35 |
+
continue
|
| 36 |
+
for j, filename in enumerate(os.listdir(os.path.join(data_path, label))):
|
| 37 |
+
if j >= 10:
|
| 38 |
+
break
|
| 39 |
+
filename = os.path.join(data_path, label, filename)
|
| 40 |
+
print(f"Index {j}. {filename}")
|
| 41 |
+
image = load_img(filename)
|
| 42 |
+
# image = load_img(filename, color_mode = color_mode)
|
| 43 |
+
# if color_mode != "grayscale":
|
| 44 |
+
# gray = np.array(rgb_to_grayscale(image))
|
| 45 |
+
# else:
|
| 46 |
+
# gray = np.array(image.copy())
|
| 47 |
+
image = np.array(image)
|
| 48 |
+
faces = faceCascade.detectMultiScale(
|
| 49 |
+
image,
|
| 50 |
+
scaleFactor=1.2,
|
| 51 |
+
minNeighbors=5,
|
| 52 |
+
minSize=(20, 20)
|
| 53 |
+
)
|
| 54 |
+
for (x,y,w,h) in faces:
|
| 55 |
+
if w == 0 or h == 0:
|
| 56 |
+
continue
|
| 57 |
+
image_roi = image[y:y+h, x:x+w]
|
| 58 |
+
image_roi = img_to_array(image_roi)
|
| 59 |
+
image_roi = resize(image_roi, input_size)
|
| 60 |
+
|
| 61 |
+
image_list.append(image_roi)
|
| 62 |
+
class_list.append(label)
|
| 63 |
+
|
| 64 |
+
os.system("cls")
|
| 65 |
+
encoder = OneHotEncoder(sparse_output=False)
|
| 66 |
+
class_list = encoder.fit_transform(np.array(class_list).reshape(-1, 1))
|
| 67 |
+
|
| 68 |
+
image_list = np.asarray(image_list)
|
| 69 |
+
self.label_names = encoder.categories_[0]
|
| 70 |
+
|
| 71 |
+
X_train, X_temp, y_train, y_temp = train_test_split(image_list, class_list, test_size=0.3)
|
| 72 |
+
X_val, X_test, y_val, y_test = train_test_split(X_temp, y_temp, test_size=0.5)
|
| 73 |
+
|
| 74 |
+
self.X_train = X_train
|
| 75 |
+
self.y_train = y_train
|
| 76 |
+
self.X_val = X_val
|
| 77 |
+
self.y_val = y_val
|
| 78 |
+
self.X_test = X_test
|
| 79 |
+
self.y_test = y_test
|
| 80 |
+
print(f"Train dataset len: {X_train.shape[0]}")
|
| 81 |
+
print(f"Val dataset len: {X_val.shape[0]}")
|
| 82 |
+
print(f"Test dataset len: {X_test.shape[0]}")
|
| 83 |
+
print(f"Sample image shape: {X_train[0].shape}")
|
| 84 |
+
|
| 85 |
+
def save(self, save_path):
|
| 86 |
+
self.X_train = []
|
| 87 |
+
self.y_train = []
|
| 88 |
+
self.X_val = []
|
| 89 |
+
self.y_val = []
|
| 90 |
+
self.X_test = []
|
| 91 |
+
self.y_test = []
|
| 92 |
+
|
| 93 |
+
model_save_path = save_path + "_model.h5"
|
| 94 |
+
self.model.save(model_save_path)
|
| 95 |
+
|
| 96 |
+
# Save the rest of the class attributes
|
| 97 |
+
with open(save_path + "_attributes.pickle", "wb") as file:
|
| 98 |
+
pickle.dump({
|
| 99 |
+
"data_augmentation": self.data_augmentation,
|
| 100 |
+
"label_names": self.label_names,
|
| 101 |
+
"input_size": self.input_size,
|
| 102 |
+
}, file)
|
| 103 |
+
|
| 104 |
+
@classmethod
|
| 105 |
+
def load(cls, save_path):
|
| 106 |
+
with open(save_path + "_attributes.pickle", "rb") as file:
|
| 107 |
+
attributes = pickle.load(file)
|
| 108 |
+
|
| 109 |
+
instance = cls()
|
| 110 |
+
instance.data_augmentation = attributes["data_augmentation"]
|
| 111 |
+
instance.label_names = attributes["label_names"]
|
| 112 |
+
instance.input_size = attributes["input_size"]
|
| 113 |
+
|
| 114 |
+
# Load the Keras model
|
| 115 |
+
model_save_path = save_path + "_model.h5"
|
| 116 |
+
instance.model = tf.keras.models.load_model(model_save_path)
|
| 117 |
+
|
| 118 |
+
print(f"Model and attributes loaded from {save_path}")
|
| 119 |
+
return instance
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def fit(self, model_name: str, augmentation=True, save_path=None, batch_size=64, epochs=10):
|
| 123 |
+
inputs = Input(shape=self.X_train[0].shape)
|
| 124 |
+
layer = self.data_augmentation(inputs) if augmentation else inputs
|
| 125 |
+
|
| 126 |
+
base_model = VGGFace(model=model_name, include_top=False, input_shape=self.X_train[0].shape, pooling="avg")
|
| 127 |
+
base_model.trainable = False
|
| 128 |
+
|
| 129 |
+
layer = base_model(layer)
|
| 130 |
+
|
| 131 |
+
layer = Flatten(name="Flatten")(layer)
|
| 132 |
+
out = Dense(len(self.label_names), activation="softmax")(layer)
|
| 133 |
+
|
| 134 |
+
model = Model(inputs, out)
|
| 135 |
+
model.compile(optimizer="adam", metrics=["accuracy"], loss="categorical_crossentropy")
|
| 136 |
+
|
| 137 |
+
print(model.summary())
|
| 138 |
+
|
| 139 |
+
self.history = model.fit(
|
| 140 |
+
self.X_train, self.y_train,
|
| 141 |
+
batch_size=batch_size,
|
| 142 |
+
epochs=epochs,
|
| 143 |
+
validation_data=(self.X_val, self.y_val),
|
| 144 |
+
callbacks=[EarlyStopping(monitor="val_loss", patience=3)]
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
self.model = model
|
| 148 |
+
if save_path is not None:
|
| 149 |
+
self.save(save_path)
|
| 150 |
+
|
| 151 |
+
loss, accuracy = model.evaluate(self.X_test, self.y_test)
|
| 152 |
+
print(f"Test accuracy:{(accuracy * 100):2f}")
|
| 153 |
+
print(f"Test loss:{loss:2f}")
|
| 154 |
+
return model
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
def predict(self, predict_image):
|
| 158 |
+
predict_image = img_to_array(predict_image)
|
| 159 |
+
predict_image = resize(predict_image, self.input_size)
|
| 160 |
+
predict_image = np.expand_dims(predict_image, axis=0)
|
| 161 |
+
predict_label = self.model.predict(predict_image)
|
| 162 |
+
return self.label_names[np.argmax(predict_label)], np.max(predict_label)
|
| 163 |
+
|
| 164 |
+
faceRecognition = ResNetModel.load("resnet_v2")
|
| 165 |
+
def predict(image):
|
| 166 |
+
|
| 167 |
+
faceCascade = cv2.CascadeClassifier('Cascades/haarcascade_frontalface_default.xml')
|
| 168 |
+
frame = cv2.flip(image, 1)
|
| 169 |
+
faces = faceCascade.detectMultiScale(
|
| 170 |
+
frame,
|
| 171 |
+
scaleFactor=1.2,
|
| 172 |
+
minNeighbors=5,
|
| 173 |
+
minSize=(20, 20)
|
| 174 |
+
)
|
| 175 |
+
for (x,y,w,h) in faces:
|
| 176 |
+
cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
|
| 177 |
+
roi_color = frame[y:y+h, x:x+w]
|
| 178 |
+
roi_color = cv2.flip(roi_color, 1)
|
| 179 |
+
label, conf = faceRecognition.predict(roi_color)
|
| 180 |
+
label = label[:12] + "..." if len(label) > 10 else label
|
| 181 |
+
text = "{label} : {conf:.3f}".format(label = label, conf = conf)
|
| 182 |
+
|
| 183 |
+
cv2.putText(frame, text, (x, y-10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0,0,255), 2)
|
| 184 |
+
return frame
|
| 185 |
+
|
| 186 |
+
css = """.my-group {max-width: 600px !important; max-height: 600px !important;}
|
| 187 |
+
.my-column {display: flex !important; justify-content: center !important; align-items: center !important;}"""
|
| 188 |
+
rtc_configuration = {
|
| 189 |
+
"frameRate": {"ideal": 10}
|
| 190 |
+
}
|
| 191 |
+
with gr.Blocks(css=css) as demo:
|
| 192 |
+
gr.HTML(
|
| 193 |
+
"""
|
| 194 |
+
<h1 style='text-align: center'>
|
| 195 |
+
Face Recognition Using FaceNet LB01 - Kelompok 8
|
| 196 |
+
</h1>
|
| 197 |
+
<ul style='text-align: center'>
|
| 198 |
+
<h4> <li>2602082452 - Rendy Susanto </li> </h4>
|
| 199 |
+
<h4> <li>2602090031 - Rafael Juviano Joesoef </li> </h4>
|
| 200 |
+
<h4> <li>2602091122 - Owen Tamashi Buntoro </li> </h4>
|
| 201 |
+
</ul>
|
| 202 |
+
"""
|
| 203 |
+
)
|
| 204 |
+
with gr.Column(elem_classes=["my-column"]):
|
| 205 |
+
with gr.Group(elem_classes=["my-group"]):
|
| 206 |
+
image = WebRTC(label="Stream", rtc_configuration=rtc_configuration)
|
| 207 |
+
|
| 208 |
+
image.stream(
|
| 209 |
+
fn=predict, inputs=[image], outputs=[image]
|
| 210 |
+
)
|
| 211 |
+
|
| 212 |
+
if __name__ == "__main__":
|
| 213 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
tensorflow==2.13.0
|
| 2 |
+
keras==2.12
|
| 3 |
+
keras-vggface==0.6
|
| 4 |
+
keras-applications==1.0.8
|
| 5 |
+
scikit-learn==1.6.0
|
resnet_v2_attributes.pickle
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:676641cbbbce10d3ea01f32b9b2f4e3faff753c13aff97347b7ccbf6d3fc109f
|
| 3 |
+
size 65347
|
resnet_v2_model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9454c3de3db3b11a72676f6bde91b8ad7c17939c3faac2d378ab95843cba8c58
|
| 3 |
+
size 105037696
|