Spaces:
Running
on
Zero
Running
on
Zero
| #!/usr/bin/env python3 | |
| # -*- encoding: utf-8 -*- | |
| # Copyright FunASR (https://github.com/alibaba-damo-academy/FunASR). All Rights Reserved. | |
| # MIT License (https://opensource.org/licenses/MIT) | |
| # Modified from 3D-Speaker (https://github.com/alibaba-damo-academy/3D-Speaker) | |
| from collections import OrderedDict | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.utils.checkpoint as cp | |
| import torchaudio.compliance.kaldi as Kaldi | |
| def pad_list(xs, pad_value): | |
| """Perform padding for the list of tensors. | |
| Args: | |
| xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)]. | |
| pad_value (float): Value for padding. | |
| Returns: | |
| Tensor: Padded tensor (B, Tmax, `*`). | |
| Examples: | |
| >>> x = [torch.ones(4), torch.ones(2), torch.ones(1)] | |
| >>> x | |
| [tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])] | |
| >>> pad_list(x, 0) | |
| tensor([[1., 1., 1., 1.], | |
| [1., 1., 0., 0.], | |
| [1., 0., 0., 0.]]) | |
| """ | |
| n_batch = len(xs) | |
| max_len = max(x.size(0) for x in xs) | |
| pad = xs[0].new(n_batch, max_len, *xs[0].size()[1:]).fill_(pad_value) | |
| for i in range(n_batch): | |
| pad[i, : xs[i].size(0)] = xs[i] | |
| return pad | |
| def extract_feature(audio): | |
| features = [] | |
| feature_times = [] | |
| feature_lengths = [] | |
| for au in audio: | |
| feature = Kaldi.fbank(au.unsqueeze(0), num_mel_bins=80) | |
| feature = feature - feature.mean(dim=0, keepdim=True) | |
| features.append(feature) | |
| feature_times.append(au.shape[0]) | |
| feature_lengths.append(feature.shape[0]) | |
| # padding for batch inference | |
| features_padded = pad_list(features, pad_value=0) | |
| # features = torch.cat(features) | |
| return features_padded, feature_lengths, feature_times | |
| class BasicResBlock(torch.nn.Module): | |
| expansion = 1 | |
| def __init__(self, in_planes, planes, stride=1): | |
| super(BasicResBlock, self).__init__() | |
| self.conv1 = torch.nn.Conv2d( | |
| in_planes, planes, kernel_size=3, stride=(stride, 1), padding=1, bias=False | |
| ) | |
| self.bn1 = torch.nn.BatchNorm2d(planes) | |
| self.conv2 = torch.nn.Conv2d(planes, planes, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.bn2 = torch.nn.BatchNorm2d(planes) | |
| self.shortcut = torch.nn.Sequential() | |
| if stride != 1 or in_planes != self.expansion * planes: | |
| self.shortcut = torch.nn.Sequential( | |
| torch.nn.Conv2d( | |
| in_planes, | |
| self.expansion * planes, | |
| kernel_size=1, | |
| stride=(stride, 1), | |
| bias=False, | |
| ), | |
| torch.nn.BatchNorm2d(self.expansion * planes), | |
| ) | |
| def forward(self, x): | |
| out = F.relu(self.bn1(self.conv1(x))) | |
| out = self.bn2(self.conv2(out)) | |
| out += self.shortcut(x) | |
| out = F.relu(out) | |
| return out | |
| class FCM(torch.nn.Module): | |
| def __init__(self, block=BasicResBlock, num_blocks=[2, 2], m_channels=32, feat_dim=80): | |
| super(FCM, self).__init__() | |
| self.in_planes = m_channels | |
| self.conv1 = torch.nn.Conv2d(1, m_channels, kernel_size=3, stride=1, padding=1, bias=False) | |
| self.bn1 = torch.nn.BatchNorm2d(m_channels) | |
| self.layer1 = self._make_layer(block, m_channels, num_blocks[0], stride=2) | |
| self.layer2 = self._make_layer(block, m_channels, num_blocks[0], stride=2) | |
| self.conv2 = torch.nn.Conv2d( | |
| m_channels, m_channels, kernel_size=3, stride=(2, 1), padding=1, bias=False | |
| ) | |
| self.bn2 = torch.nn.BatchNorm2d(m_channels) | |
| self.out_channels = m_channels * (feat_dim // 8) | |
| def _make_layer(self, block, planes, num_blocks, stride): | |
| strides = [stride] + [1] * (num_blocks - 1) | |
| layers = [] | |
| for stride in strides: | |
| layers.append(block(self.in_planes, planes, stride)) | |
| self.in_planes = planes * block.expansion | |
| return torch.nn.Sequential(*layers) | |
| def forward(self, x): | |
| x = x.unsqueeze(1) | |
| out = F.relu(self.bn1(self.conv1(x))) | |
| out = self.layer1(out) | |
| out = self.layer2(out) | |
| out = F.relu(self.bn2(self.conv2(out))) | |
| shape = out.shape | |
| out = out.reshape(shape[0], shape[1] * shape[2], shape[3]) | |
| return out | |
| def get_nonlinear(config_str, channels): | |
| nonlinear = torch.nn.Sequential() | |
| for name in config_str.split("-"): | |
| if name == "relu": | |
| nonlinear.add_module("relu", torch.nn.ReLU(inplace=True)) | |
| elif name == "prelu": | |
| nonlinear.add_module("prelu", torch.nn.PReLU(channels)) | |
| elif name == "batchnorm": | |
| nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels)) | |
| elif name == "batchnorm_": | |
| nonlinear.add_module("batchnorm", torch.nn.BatchNorm1d(channels, affine=False)) | |
| else: | |
| raise ValueError("Unexpected module ({}).".format(name)) | |
| return nonlinear | |
| def statistics_pooling(x, dim=-1, keepdim=False, unbiased=True, eps=1e-2): | |
| mean = x.mean(dim=dim) | |
| std = x.std(dim=dim, unbiased=unbiased) | |
| stats = torch.cat([mean, std], dim=-1) | |
| if keepdim: | |
| stats = stats.unsqueeze(dim=dim) | |
| return stats | |
| class StatsPool(torch.nn.Module): | |
| def forward(self, x): | |
| return statistics_pooling(x) | |
| class TDNNLayer(torch.nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| kernel_size, | |
| stride=1, | |
| padding=0, | |
| dilation=1, | |
| bias=False, | |
| config_str="batchnorm-relu", | |
| ): | |
| super(TDNNLayer, self).__init__() | |
| if padding < 0: | |
| assert ( | |
| kernel_size % 2 == 1 | |
| ), "Expect equal paddings, but got even kernel size ({})".format(kernel_size) | |
| padding = (kernel_size - 1) // 2 * dilation | |
| self.linear = torch.nn.Conv1d( | |
| in_channels, | |
| out_channels, | |
| kernel_size, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| bias=bias, | |
| ) | |
| self.nonlinear = get_nonlinear(config_str, out_channels) | |
| def forward(self, x): | |
| x = self.linear(x) | |
| x = self.nonlinear(x) | |
| return x | |
| class CAMLayer(torch.nn.Module): | |
| def __init__( | |
| self, bn_channels, out_channels, kernel_size, stride, padding, dilation, bias, reduction=2 | |
| ): | |
| super(CAMLayer, self).__init__() | |
| self.linear_local = torch.nn.Conv1d( | |
| bn_channels, | |
| out_channels, | |
| kernel_size, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| bias=bias, | |
| ) | |
| self.linear1 = torch.nn.Conv1d(bn_channels, bn_channels // reduction, 1) | |
| self.relu = torch.nn.ReLU(inplace=True) | |
| self.linear2 = torch.nn.Conv1d(bn_channels // reduction, out_channels, 1) | |
| self.sigmoid = torch.nn.Sigmoid() | |
| def forward(self, x): | |
| y = self.linear_local(x) | |
| context = x.mean(-1, keepdim=True) + self.seg_pooling(x) | |
| context = self.relu(self.linear1(context)) | |
| m = self.sigmoid(self.linear2(context)) | |
| return y * m | |
| def seg_pooling(self, x, seg_len=100, stype="avg"): | |
| if stype == "avg": | |
| seg = F.avg_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) | |
| elif stype == "max": | |
| seg = F.max_pool1d(x, kernel_size=seg_len, stride=seg_len, ceil_mode=True) | |
| else: | |
| raise ValueError("Wrong segment pooling type.") | |
| shape = seg.shape | |
| seg = seg.unsqueeze(-1).expand(*shape, seg_len).reshape(*shape[:-1], -1) | |
| seg = seg[..., : x.shape[-1]] | |
| return seg | |
| class CAMDenseTDNNLayer(torch.nn.Module): | |
| def __init__( | |
| self, | |
| in_channels, | |
| out_channels, | |
| bn_channels, | |
| kernel_size, | |
| stride=1, | |
| dilation=1, | |
| bias=False, | |
| config_str="batchnorm-relu", | |
| memory_efficient=False, | |
| ): | |
| super(CAMDenseTDNNLayer, self).__init__() | |
| assert kernel_size % 2 == 1, "Expect equal paddings, but got even kernel size ({})".format( | |
| kernel_size | |
| ) | |
| padding = (kernel_size - 1) // 2 * dilation | |
| self.memory_efficient = memory_efficient | |
| self.nonlinear1 = get_nonlinear(config_str, in_channels) | |
| self.linear1 = torch.nn.Conv1d(in_channels, bn_channels, 1, bias=False) | |
| self.nonlinear2 = get_nonlinear(config_str, bn_channels) | |
| self.cam_layer = CAMLayer( | |
| bn_channels, | |
| out_channels, | |
| kernel_size, | |
| stride=stride, | |
| padding=padding, | |
| dilation=dilation, | |
| bias=bias, | |
| ) | |
| def bn_function(self, x): | |
| return self.linear1(self.nonlinear1(x)) | |
| def forward(self, x): | |
| if self.training and self.memory_efficient: | |
| x = cp.checkpoint(self.bn_function, x) | |
| else: | |
| x = self.bn_function(x) | |
| x = self.cam_layer(self.nonlinear2(x)) | |
| return x | |
| class CAMDenseTDNNBlock(torch.nn.ModuleList): | |
| def __init__( | |
| self, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| bn_channels, | |
| kernel_size, | |
| stride=1, | |
| dilation=1, | |
| bias=False, | |
| config_str="batchnorm-relu", | |
| memory_efficient=False, | |
| ): | |
| super(CAMDenseTDNNBlock, self).__init__() | |
| for i in range(num_layers): | |
| layer = CAMDenseTDNNLayer( | |
| in_channels=in_channels + i * out_channels, | |
| out_channels=out_channels, | |
| bn_channels=bn_channels, | |
| kernel_size=kernel_size, | |
| stride=stride, | |
| dilation=dilation, | |
| bias=bias, | |
| config_str=config_str, | |
| memory_efficient=memory_efficient, | |
| ) | |
| self.add_module("tdnnd%d" % (i + 1), layer) | |
| def forward(self, x): | |
| for layer in self: | |
| x = torch.cat([x, layer(x)], dim=1) | |
| return x | |
| class TransitLayer(torch.nn.Module): | |
| def __init__(self, in_channels, out_channels, bias=True, config_str="batchnorm-relu"): | |
| super(TransitLayer, self).__init__() | |
| self.nonlinear = get_nonlinear(config_str, in_channels) | |
| self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias) | |
| def forward(self, x): | |
| x = self.nonlinear(x) | |
| x = self.linear(x) | |
| return x | |
| class DenseLayer(torch.nn.Module): | |
| def __init__(self, in_channels, out_channels, bias=False, config_str="batchnorm-relu"): | |
| super(DenseLayer, self).__init__() | |
| self.linear = torch.nn.Conv1d(in_channels, out_channels, 1, bias=bias) | |
| self.nonlinear = get_nonlinear(config_str, out_channels) | |
| def forward(self, x): | |
| if len(x.shape) == 2: | |
| x = self.linear(x.unsqueeze(dim=-1)).squeeze(dim=-1) | |
| else: | |
| x = self.linear(x) | |
| x = self.nonlinear(x) | |
| return x | |
| # @tables.register("model_classes", "CAMPPlus") | |
| class CAMPPlus(torch.nn.Module): | |
| def __init__( | |
| self, | |
| feat_dim=80, | |
| embedding_size=192, | |
| growth_rate=32, | |
| bn_size=4, | |
| init_channels=128, | |
| config_str="batchnorm-relu", | |
| memory_efficient=True, | |
| output_level="segment", | |
| **kwargs, | |
| ): | |
| super().__init__() | |
| self.head = FCM(feat_dim=feat_dim) | |
| channels = self.head.out_channels | |
| self.output_level = output_level | |
| self.xvector = torch.nn.Sequential( | |
| OrderedDict( | |
| [ | |
| ( | |
| "tdnn", | |
| TDNNLayer( | |
| channels, | |
| init_channels, | |
| 5, | |
| stride=2, | |
| dilation=1, | |
| padding=-1, | |
| config_str=config_str, | |
| ), | |
| ), | |
| ] | |
| ) | |
| ) | |
| channels = init_channels | |
| for i, (num_layers, kernel_size, dilation) in enumerate( | |
| zip((12, 24, 16), (3, 3, 3), (1, 2, 2)) | |
| ): | |
| block = CAMDenseTDNNBlock( | |
| num_layers=num_layers, | |
| in_channels=channels, | |
| out_channels=growth_rate, | |
| bn_channels=bn_size * growth_rate, | |
| kernel_size=kernel_size, | |
| dilation=dilation, | |
| config_str=config_str, | |
| memory_efficient=memory_efficient, | |
| ) | |
| self.xvector.add_module("block%d" % (i + 1), block) | |
| channels = channels + num_layers * growth_rate | |
| self.xvector.add_module( | |
| "transit%d" % (i + 1), | |
| TransitLayer(channels, channels // 2, bias=False, config_str=config_str), | |
| ) | |
| channels //= 2 | |
| self.xvector.add_module("out_nonlinear", get_nonlinear(config_str, channels)) | |
| if self.output_level == "segment": | |
| self.xvector.add_module("stats", StatsPool()) | |
| self.xvector.add_module( | |
| "dense", DenseLayer(channels * 2, embedding_size, config_str="batchnorm_") | |
| ) | |
| else: | |
| assert ( | |
| self.output_level == "frame" | |
| ), "`output_level` should be set to 'segment' or 'frame'. " | |
| for m in self.modules(): | |
| if isinstance(m, (torch.nn.Conv1d, torch.nn.Linear)): | |
| torch.nn.init.kaiming_normal_(m.weight.data) | |
| if m.bias is not None: | |
| torch.nn.init.zeros_(m.bias) | |
| def forward(self, x): | |
| x = x.permute(0, 2, 1) # (B,T,F) => (B,F,T) | |
| x = self.head(x) | |
| x = self.xvector(x) | |
| if self.output_level == "frame": | |
| x = x.transpose(1, 2) | |
| return x | |
| def inference(self, audio_list): | |
| speech, speech_lengths, speech_times = extract_feature(audio_list) | |
| results = self.forward(speech.to(torch.float32)) | |
| return results | |